This paper is concerned with the stochastic linear quadratic optimal control problems (LQ problems, for short) for which the coefficients are allowed to be random and the cost functionals are allowed to have negative weights on the square of control variables. We propose a new method, the equivalent cost functional method, to deal with the LQ problems. Comparing to the classical methods, the new method is simple, flexible and non-abstract. The new method can also be applied to deal with nonlinear optimization problems.
Classification : 93E20, 49N10, 60H10
Mots clés : stochastic LQ problem, stochastic hamiltonian system, forward-backward stochastic differential equation, Riccati equation, stochastic maximum principle
@article{COCV_2013__19_1_78_0, author = {Yu, Zhiyong}, title = {Equivalent cost functionals and stochastic linear quadratic optimal control problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {78--90}, publisher = {EDP-Sciences}, volume = {19}, number = {1}, year = {2013}, doi = {10.1051/cocv/2011206}, zbl = {1258.93129}, mrnumber = {3023061}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2011206/} }
TY - JOUR AU - Yu, Zhiyong TI - Equivalent cost functionals and stochastic linear quadratic optimal control problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 DA - 2013/// SP - 78 EP - 90 VL - 19 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2011206/ UR - https://zbmath.org/?q=an%3A1258.93129 UR - https://www.ams.org/mathscinet-getitem?mr=3023061 UR - https://doi.org/10.1051/cocv/2011206 DO - 10.1051/cocv/2011206 LA - en ID - COCV_2013__19_1_78_0 ER -
Yu, Zhiyong. Equivalent cost functionals and stochastic linear quadratic optimal control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 1, pp. 78-90. doi : 10.1051/cocv/2011206. http://www.numdam.org/articles/10.1051/cocv/2011206/
[1] Optimal control-Linear quadratic methods. Prentice-Hall, New York (1989). | Zbl 0751.49013
and ,[2] Lecture on stochastic cntrol, Part I, in Nonlinear Filtering and Stochastic Control, Lecture Notes in Math. 972. Springer-Verlag, Berlin (1983) 1-39. | MR 705931 | Zbl 0505.93078
,[3] Controle des systems linears quadratiques : applications de l'integrale stochastique, in Séminaire de Probabilités XII, Lecture Notes in Math. 649, edited by C. Dellacherie, P.A. Meyer and M. Weil. Springer-Verlag, Berlin (1978) 180-264. | Numdam | MR 520007 | Zbl 0389.93052
,[4] Stochastic linear quadratic optimal control problems. Appl. Math. Optim. 43 (2001) 21-45. | MR 1804393 | Zbl 0969.93044
and ,[5] Stochastic linaer quadratic regulators with indefinite control weight costs. II. SIAM J. Control Optim. 39 (2000) 1065-1081. | MR 1814267 | Zbl 1023.93072
and ,[6] Stochastic linear quadratic regulators with indefinite control weight costs. SIAM J. Control Optim. 36 (1998) 1685-1702. | MR 1626817 | Zbl 0916.93084
, and ,[7] Linear estimation and stochastic control. Chapman and Hall, London (1977). | MR 476099 | Zbl 0437.60001
,[8] Solution of forward-backward stochastic differential equations. Prob. Theory Relat. Fields 103 (1995) 273-283. | MR 1355060 | Zbl 0831.60065
and ,[9] Optimal investment problems with uncertain time horizon. Working paper.
and ,[10] Contributions to the theory of optimal control. Bol. Soc. Math. Mexicana 5 (1960) 102-119. | MR 127472 | Zbl 0112.06303
,[11] Forward-backward stochastic differential equations and their applications, Lecture Notes in Math. 1702. Springer-Verlag, New York (1999). | MR 1704232 | Zbl 0927.60004
and ,[12] New development in stochastic maximum principle and related backward stochastic differential equations, in proceedings of 31st CDC Conference. Tucson (1992).
,[13] Open problems on backward stochastic differential equations, in Control of Distributed Parameter and Stochastic Systems (Hangzhou, 1998). edited by S. Chen et al., Kluwer Academic Publishers, Boston (1999) 966-979. | MR 1777419 | Zbl 0981.93079
,[14] Fully coupled forward-backward stochastic differential equation and applications to optimal control. SIAM J. Control Optim. 37 (1999) 825-843. | MR 1675098 | Zbl 0931.60048
and ,[15] Convex Analysis. Princeton University Press, Princeton, New Jersey (1970). | MR 274683 | Zbl 0932.90001
,[16] General linear quadratic optimal stochastic control problems with random coefficients : linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42 (2003) 53-75. | MR 1982735 | Zbl 1035.93065
,[17] On a matrix Riccati equation of stochastic control. SIAM J. Control Optim. 6 (1968) 312-326 . | MR 239161 | Zbl 0164.19101
,[18] Forward-backward stochastic differential equations, linear quadratic stochastic optimal control and nonzero sum differential games. Journal of Systems Science and Complexity 18 (2005) 179-192. | MR 2136983 | Zbl 1156.93409
,[19] Stochastic controls : Hamiltonian systems and HJB equations. Springer-Verlag, New York (1999). | MR 1696772 | Zbl 0943.93002
and ,Cité par Sources :