Optimal convex shapes for concave functionals
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 693-711.

Motivated by a long-standing conjecture of Pólya and Szegö about the Newtonian capacity of convex bodies, we discuss the role of concavity inequalities in shape optimization, and we provide several counterexamples to the Blaschke-concavity of variational functionals, including capacity. We then introduce a new algebraic structure on convex bodies, which allows to obtain global concavity and indecomposability results, and we discuss their application to isoperimetric-like inequalities. As a byproduct of this approach we also obtain a quantitative version of the Kneser-Süss inequality. Finally, for a large class of functionals involving Dirichlet energies and the surface measure, we perform a local analysis of strictly convex portions of the boundary via second order shape derivatives. This allows in particular to exclude the presence of smooth regions with positive Gauss curvature in an optimal shape for Pólya-Szegö problem.

DOI : https://doi.org/10.1051/cocv/2011167
Classification : 49Q10,  31A15
Mots clés : convex bodies, concavity inequalities, optimization, shape derivatives, capacity
@article{COCV_2012__18_3_693_0,
     author = {Bucur, Dorin and Fragal\`a, Ilaria and Lamboley, Jimmy},
     title = {Optimal convex shapes for concave functionals},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {693--711},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {3},
     year = {2012},
     doi = {10.1051/cocv/2011167},
     zbl = {1253.49031},
     mrnumber = {3041661},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2011167/}
}
TY  - JOUR
AU  - Bucur, Dorin
AU  - Fragalà, Ilaria
AU  - Lamboley, Jimmy
TI  - Optimal convex shapes for concave functionals
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
DA  - 2012///
SP  - 693
EP  - 711
VL  - 18
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2011167/
UR  - https://zbmath.org/?q=an%3A1253.49031
UR  - https://www.ams.org/mathscinet-getitem?mr=3041661
UR  - https://doi.org/10.1051/cocv/2011167
DO  - 10.1051/cocv/2011167
LA  - en
ID  - COCV_2012__18_3_693_0
ER  - 
Bucur, Dorin; Fragalà, Ilaria; Lamboley, Jimmy. Optimal convex shapes for concave functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 693-711. doi : 10.1051/cocv/2011167. http://www.numdam.org/articles/10.1051/cocv/2011167/

[1] A.D. Alexandrov, Zur theorie der gemischten volumina von konvexen korpern III, Mat. Sb. 3 (1938) 27-46. | JFM 64.1346.03 | Zbl 0018.42402

[2] V. Alexandrov, N. Kopteva and S.S. Kutateladze, Blaschke addition and convex polyedra. preprint, arXiv:math/0502345 (2005). | MR 2127379 | Zbl 1133.52301

[3] C. Bianchini and P. Salani, Concavity properties for elliptic free boundary problems. Nonlinear Anal. 71 (2009) 4461-4470. | MR 2548676 | Zbl 1177.35257

[4] C. Borell, Capacitary inequalities of the Brunn-Minkowki type. Math. Ann. 263 (1983) 179-184. | MR 698001 | Zbl 0546.31001

[5] C. Borell, Greenian potentials and concavity. Math. Ann. 272 (1985) 155-160. | MR 794098 | Zbl 0584.31003

[6] H. Brascamp and E. Lieb, On extension of the Brunn-Minkowski and Prékopa-Leindler inequality, including inequalities for log concave functions, and with an application to diffision equation. J. Funct. Anal. 22 (1976) 366-389. | MR 450480 | Zbl 0334.26009

[7] F. Brock, V. Ferone and B. Kawohl, A Symmetry Problem in the Calculus of Variations, Calc. Var. Partial Differential Equations 4 (1996) 593-599. | MR 1416001 | Zbl 0856.49018

[8] E.M. Bronshtein, Extremal H-convex bodies. Sibirsk Mat. Zh. 20 (1979) 412-415. | MR 530507 | Zbl 0432.52008

[9] D. Bucur, G. Buttazzo and A. Henrot, Minimization of λ2(Ω) with a perimeter constraint. Indiana Univ. Math. J. 58 (2009) 2709-2728. | MR 2603765 | Zbl 1186.49032

[10] L. Caffarelli, D. Jerison and E. Lieb, On the case of equality in the Brunn-Minkowski inequality for capacity. Adv. Math. 117 (1996) 193-207. | MR 1371649 | Zbl 0847.31005

[11] S. Campi and P. Gronchi, On volume product inequalities for convex sets. Proc. Amer. Math. Soc. 134 (2006) 2393-2402. | MR 2213713 | Zbl 1095.52002

[12] A. Colesanti, Brunn-Minkowski inequalities for variational functionals and related problems. Adv. Math. 194 (2005) 105-140. | MR 2141856 | Zbl 1128.35318

[13] A. Colesanti and P. Cuoghi, The Brunn-Minkowski inequality for the n-dimensional logarithmic capacity. Potential Anal. 22 (2005) 289-304 | MR 2134723 | Zbl 1074.31007

[14] A. Colesanti and M. Fimiani, The Minkowski problem for the torsional rigidity. Indiana Univ. Math. J. 59 (2010) 1013-1040. | MR 2779070 | Zbl 1217.31001

[15] A. Colesanti and P. Salani, The Brunn-Minkowski inequality for p-capacity of convex bodies. Math. Ann. 327 (2003) 459-479. | MR 2021025 | Zbl 1052.31005

[16] G. Crasta and F. Gazzola, Some estimates of the minimizing properties of web functions, Calc. Var. Partial Differential Equations 15 (2002) 45-66. | MR 1920714 | Zbl 1026.49010

[17] G. Crasta, I. Fragalà and F. Gazzola, On a long-standing conjecture by Pólya-Szegö and related topics. Z. Angew. Math. Phys. 56 (2005) 763-782. | MR 2184904 | Zbl 1109.31003

[18] A. Figalli, F. Maggi and A. Pratelli, A refined Brunn-Minkowski inequality for convex sets. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26 (2009) 2511-2519. | Numdam | MR 2569906 | Zbl 1192.52015

[19] I. Fragalà, F. Gazzola and M. Pierre, On an isoperimetric inequality for capacity conjectured by Pólya and Szegö. J. Differ. Equ. 250 (2011) 1500-1520. | MR 2737215 | Zbl 1219.49034

[20] P. Freitas, Upper and lower bounds for the first Dirichlet eigenvalue of a triangle, Proc. Am. Math. Soc. 134 (2006) 2083-2089. | MR 2215778 | Zbl 1092.35070

[21] R. Gardner, The Brunn-Minkowski inequality. Bull. Am. Math. Soc. (N.S.) 39 (2002) 355-405. | MR 1898210 | Zbl 1019.26008

[22] R.J. Gardner and D. Hartenstine, Capacities, surface area, and radial sums, Adv. Math. 221 (2009) 601-626. | MR 2508932 | Zbl 1163.52001

[23] P.R. Goodey and R. Schneider, On the intermediate area functions of convex bodies. Math. Z. 173 (1980) 185-194. | MR 583385 | Zbl 0421.52006

[24] E. Grinberg and G. Zhang, Convolutions, transforms, and convex bodies. Proc. London Math. Soc. 78 (1999) 77-115. | MR 1658156 | Zbl 0974.52001

[25] H. Hadwiger, Konkave Eikörperfunktionale. Monatsh. Math. 59 (1955) 230-237. | MR 72497 | Zbl 0068.36505

[26] A. Henrot and M. Pierre, Variation et Optimisation de Formes : une analyse géométrique, Mathématiques et Applications 48. Springer (2005). | MR 2512810 | Zbl 1098.49001

[27] D. Jerison, A Minkowski problem for electrostatic capacity. Acta Math. 176 (1996) 1-47. | MR 1395668 | Zbl 0880.35041

[28] D. Jerison, The direct method in the calculus of variations for convex bodies. Adv. Math. 122 (1996) 262-279. | MR 1409423 | Zbl 0920.35056

[29] S.S. Kutateladze, One functional-analytical idea by Alexandrov in convex geometry. Vladikavkaz. Mat. Zh. 4 (2002) 50-55. | MR 2065103 | Zbl 1049.52008

[30] S.S. Kutateladze, Pareto optimality and isoperimetry. preprint, arXiv:0902.1157v1 (2009).

[31] T. Lachand-Robert and M.A. Peletier, An example of non-convex minimization and an application to Newton's problem of the body of least resistance. Ann. Inst. Henri Poincaré 18 (2001) 179-198. | Numdam | MR 1808028 | Zbl 0993.49002

[32] J. Lamboley and A. Novruzi, Polygons as optimal shapes with convexity constraint. SIAM J. Control Optim. 48 (2009/10) 3003-3025. | MR 2599908 | Zbl 1202.49053

[33] J. Lamboley, A. Novruzi and M. Pierre, Regularity and singularities of optimal convex shapes in the plane, preprint (2011). | MR 2927624 | Zbl 1268.49051

[34] M. Lanza, De Cristoforis, Higher order differentiability properties of the composition and of the inversion operator. Indag. Math. N S 5 (1994) 457-482. | MR 1307964 | Zbl 0822.46051

[35] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies 27. Princeton University Press, Princeton, N.J. (1951). | MR 43486 | Zbl 0044.38301

[36] Ch. Pommerenke, Univalent functions. Vandenhoeck and Ruprecht, Göttingen (1975). | MR 507768 | Zbl 0298.30014

[37] P. Salani, A Brunn-Minkowski inequality for the Monge-Ampère eigenvalue. Adv. Math. 194 (2005) 67-86. | MR 2141854 | Zbl 1128.35339

[38] R. Schneider, Eine allgemeine Extremaleigenschaft der Kugel. Monatsh. Math. 71 (1967) 231-237. | MR 216370 | Zbl 0168.43401

[39] R. Schneider, Convex bodies : the Brunn-Minkowski theory. Cambridge Univ. Press (1993). | MR 1216521 | Zbl 1143.52002

Cité par Sources :