Controller design for bush-type 1-d wave networks
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 208-228.

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram's lemma and semigroup theory. The validity of cutting-edge method is proved by spectral analysis approach. In particular, we give a detailed procedure of cutting-edge for the bush-type wave networks. The results show that if we impose feedback controllers, consisting of velocity and position terms, at all the boundary vertices and at most three velocity feedback controllers on the cycle, the system is asymptotically stabilized. Finally, some examples are given.

DOI : https://doi.org/10.1051/cocv/2010050
Classification : 35L05,  35L90,  37L15,  93C20,  93D15
Mots clés : Bush-type, wave network, controller design, asymptotic stability, cutting-edge
@article{COCV_2012__18_1_208_0,
     author = {Zhang, Yaxuan and Xu, Genqi},
     title = {Controller design for bush-type 1-d wave networks},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {208--228},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {1},
     year = {2012},
     doi = {10.1051/cocv/2010050},
     zbl = {1243.35167},
     mrnumber = {2887933},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2010050/}
}
TY  - JOUR
AU  - Zhang, Yaxuan
AU  - Xu, Genqi
TI  - Controller design for bush-type 1-d wave networks
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
DA  - 2012///
SP  - 208
EP  - 228
VL  - 18
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2010050/
UR  - https://zbmath.org/?q=an%3A1243.35167
UR  - https://www.ams.org/mathscinet-getitem?mr=2887933
UR  - https://doi.org/10.1051/cocv/2010050
DO  - 10.1051/cocv/2010050
LA  - en
ID  - COCV_2012__18_1_208_0
ER  - 
Zhang, Yaxuan; Xu, Genqi. Controller design for bush-type 1-d wave networks. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 208-228. doi : 10.1051/cocv/2010050. http://www.numdam.org/articles/10.1051/cocv/2010050/

[1] K. Ammari and M. Jellouli, Stabilization of star-shaped tree of elastic strings. Differential Integral Equations 17 (2004) 1395-1410. | MR 2100033 | Zbl 1150.93537

[2] K. Ammari and M. Jellouli, Remark on stabilization of tree-shaped networks of strings. Appl. Math. 52 (2007) 327-343. | MR 2324731 | Zbl 1164.93315

[3] K. Ammari and S. Nicaise, Polynomial and analytic stabilization of a wave equation coupled with a Euler-Bernoulli beam. Math. Methods Appl. Sci. 32 (2009) 556-576. | MR 2500692 | Zbl 1156.35302

[4] K. Ammari, M. Jellouli and M. Khenissi, Stabilization of generic trees of strings. J. Dyn. Control Syst. 11 (2005) 177-193. | MR 2131807 | Zbl 1064.93034

[5] J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics Series. Springer-Verlag, New York (2008). | MR 2368647 | Zbl 1134.05001

[6] R. Dáger, Observation and control of vibrations in tree-shaped networks of strings. SIAM J. Control Optim. 43 (2004) 590-623. | MR 2086175 | Zbl 1083.93022

[7] R. Dáger and E. Zuazua, Controllability of star-shaped networks of strings. C. R. Acad. Sci. Paris, Sér. I 332 (2001) 621-626. | MR 1841896 | Zbl 0986.35018

[8] R. Dáger and E. Zuazua, Controllability of tree-shaped networks of vibrating strings. C. R. Acad. Sci. Paris, Sér. I 332 (2001) 1087-1092. | MR 1847485 | Zbl 0990.93051

[9] R. Dáger and E. Zuazua, Wave propagation, observation and control in 1-d flexible multistructures, Mathématiques and Applications 50. Springer-Verlag, Berlin (2006). | Zbl 1083.74002

[10] M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations. IMA J. Math. Control Inform. 27 (2010) 189-204. | MR 2651555 | Zbl 1198.93177

[11] B.Z. Guo and Z.C. Shao, On exponential stability of a semilinear wave equation with variable coefficients under the nonlinear boundary feedback. Nonlinear Anal. 71 (2009) 5961-5978. | MR 2566500 | Zbl 1194.35269

[12] D. Jungnickel, Graphs, Networks and Algorithms, Algorithms and Computation in Mathematics 5. Springer-Verlag, New York, third edition (2008). | MR 2363884 | Zbl 1126.68058

[13] J.E. Lagnese, G. Leugering and E.J.P.G. Schmidt, Modeling, analysis and control of dynamic elastic multi-link structures - Systems and control : Foundations and applications. Birkhäuser-Basel (1994). | MR 1279380 | Zbl 0810.73004

[14] G. Leugering and E.J.P.G. Schmidt, On the control of networks of vibrating strings and beams. Proc. of the 28th IEEE Conference on Decision and Control 3 (1989) 2287-2290.

[15] G. Leugering and E. Zuazua, On exact controllability of generic trees. ESAIM : Proc. 8 (2000) 95-105. | MR 1809563 | Zbl 0966.74049

[16] Yu.I. Lyubich and V.Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces. Studia Math. 88 (1988) 34-37. | MR 932004 | Zbl 0639.34050

[17] S. Nicaise and J. Valein, Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Netw. Heterog. Media 2 (2007) 425-479. | MR 2318841 | Zbl 1211.35050

[18] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, Berlin (1983). | MR 710486 | Zbl 0516.47023

[19] J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks. SIAM J. Control Optim. 48 (2009) 2771-2797. | MR 2558320 | Zbl 1203.93184

[20] G.Q. Xu, D.Y. Liu and Y.Q. Liu, Abstract second order hyperbolic system and applications to controlled network of strings. SIAM J. Control Optim. 47 (2008) 1762-1784. | MR 2421329 | Zbl 1167.35029

Cité par Sources :