@article{ASENS_2002_4_35_1_27_0, author = {Danchin, Rapha\"el}, title = {Zero {Mach} number limit in critical spaces for compressible {Navier-Stokes} equations}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {27--75}, publisher = {Elsevier}, volume = {Ser. 4, 35}, number = {1}, year = {2002}, doi = {10.1016/s0012-9593(01)01085-0}, zbl = {1048.35054}, language = {en}, url = {http://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/} }
TY - JOUR AU - Danchin, Raphaël TI - Zero Mach number limit in critical spaces for compressible Navier-Stokes equations JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 27 EP - 75 VL - 35 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/ DO - 10.1016/s0012-9593(01)01085-0 LA - en ID - ASENS_2002_4_35_1_27_0 ER -
%0 Journal Article %A Danchin, Raphaël %T Zero Mach number limit in critical spaces for compressible Navier-Stokes equations %J Annales scientifiques de l'École Normale Supérieure %D 2002 %P 27-75 %V 35 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/ %R 10.1016/s0012-9593(01)01085-0 %G en %F ASENS_2002_4_35_1_27_0
Danchin, Raphaël. Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 35 (2002) no. 1, pp. 27-75. doi : 10.1016/s0012-9593(01)01085-0. http://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/
[1] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. 14 (1981) 209-246. | Numdam | MR | Zbl
,[2] Ondelettes, paraproduits et Navier-Stokes, Nouveaux essais, Diderot éditeurs, 1995. | MR | Zbl
,[3] Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal. 23 (1992) 20-28. | MR | Zbl
,[4] Chemin J.-Y., About Navier-Stokes system, Prépublication du Laboratoire d'analyse numérique de Paris 6, R96023, 1996.
[5] Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math. 77 (1999) 27-50. | MR | Zbl
,[6] Global existence in critical spaces for compressible Navier-Stokes equations, Inventiones Math. 141 (2000) 579-614. | MR | Zbl
,[7] Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations 26 (2001) 1183-1233. | MR | Zbl
,[8] Global existence in critical spaces for compressible viscous and heat-conductive gases, Arch. Rational Mech. Anal. 160 (2001) 1-39. | MR | Zbl
,[9] Danchin R., Zero Mach number limit for compressible flows with periodic boundary conditions, submitted. | Zbl
[10] Danchin R., On the uniquiness in critical spaces for compressible Navier-Stokes equations, Nonlinear Differential Equations Appl., to appear. | MR | Zbl
[11] Low Mach number limit of viscous compressible flows in the whole space, Roy. Soc. London Proc. Series A 455 (1986) (1999) 2271-2279. | MR | Zbl
, ,[12] Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl. 78 (1999) 461-471. | MR | Zbl
, , , ,[13] Fabrie P., Galusinski C., The slightly compressible Navier-Stokes equations revisited, Preprint, Mathématiques Appliquées de Bordeaux, France, 1998. | MR
[14] On the Navier-Stokes initial value problem I, Arch. Rational Mech. Anal. 16 (1964) 269-315. | MR | Zbl
, ,[15] Gallagher I., A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations, Prépublication Université Paris-Sud, Mathématiques, 1999. | MR
[16] Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995) 50-68. | MR | Zbl
, ,[17] All-time existence of classical solutions for slightly compressible flows, SIAM J. Math. Anal. 29 (1998) 652-672. | MR | Zbl
, ,[18] The zero-Mach limit of compressible flows, Comm. Math. Phys. 192 (1998) 543-554. | MR | Zbl
,[19] Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J. 44 (1995) 603-676. | MR | Zbl
, ,[20] Endpoint Strichartz estimates, Amer. J. Math. 120 (1998) 955-980. | MR | Zbl
, ,[21] Compressible and incompressible fluids, Comm. Pure Appl. Math. 35 (1982) 629-651. | MR | Zbl
, ,[22] Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations, Adv. Pure Appl. Math. 12 (1991) 187-214. | MR | Zbl
, , ,[23] Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Math. 63 (1934) 193-248. | JFM | MR
,[24] On the incompressible limit of the compressible Navier-Stokes equations, Comm. Partial Differential Equations 20 (1995) 677-707. | MR | Zbl
,[25] Mathematical Topics in Fluid Dynamics, Vol. 1. Incompressible Models, Oxford University Press, 1996. | MR | Zbl
,[26] Mathematical Topics in Fluid Dynamics, Vol. 2. Compressible Models, Oxford University Press, 1998. | MR | Zbl
,[27] Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. 77 (1998) 585-627. | MR | Zbl
, ,[28] Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris, Série I 329 (1999) 387-392. | MR | Zbl
, ,[29] Peetre J., New Thoughts on Besov Spaces, Duke University Mathematical Series, Vol. 1, Durham N.C., 1976. | MR | Zbl
[30] Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter, Berlin, 1996. | MR | Zbl
, ,[31] Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977) 705-774. | MR | Zbl
,[32] The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ. 26 (1986) 323-331. | MR | Zbl
,Cited by Sources: