For every and every integer N, let be the minimum of the distance of τ from the sums , where . We prove that , for all sufficiently large positive integers N (depending on C and τ), where C is any positive constant less than .
Pour tout et tout entier N, soit la distance minimale de τ aux sommes , où . On montre que pour tout entier positif N suffisamment grand (dépendant de C et τ), quelle que soit la constante positive C, inférieure à .
Accepted:
Published online:
@article{CRMATH_2018__356_11-12_1062_0, author = {Bettin, Sandro and Molteni, Giuseppe and Sanna, Carlo}, title = {Small values of signed harmonic sums}, journal = {Comptes Rendus. Math\'ematique}, pages = {1062--1074}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.11.007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2018.11.007/} }
TY - JOUR AU - Bettin, Sandro AU - Molteni, Giuseppe AU - Sanna, Carlo TI - Small values of signed harmonic sums JO - Comptes Rendus. Mathématique PY - 2018 SP - 1062 EP - 1074 VL - 356 IS - 11-12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2018.11.007/ DO - 10.1016/j.crma.2018.11.007 LA - en ID - CRMATH_2018__356_11-12_1062_0 ER -
%0 Journal Article %A Bettin, Sandro %A Molteni, Giuseppe %A Sanna, Carlo %T Small values of signed harmonic sums %J Comptes Rendus. Mathématique %D 2018 %P 1062-1074 %V 356 %N 11-12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2018.11.007/ %R 10.1016/j.crma.2018.11.007 %G en %F CRMATH_2018__356_11-12_1062_0
Bettin, Sandro; Molteni, Giuseppe; Sanna, Carlo. Small values of signed harmonic sums. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1062-1074. doi : 10.1016/j.crma.2018.11.007. http://www.numdam.org/articles/10.1016/j.crma.2018.11.007/
[1] Greedy approximations by signed harmonic sums and the Thue–Morse sequence, 2018 (preprint) | arXiv
[2] Experimentation in Mathematics – Computational Paths to Discovery, A K Peters, Ltd., Natick, MA, 2004
[3] A p-adic study of the partial sums of the harmonic series, Exp. Math., Volume 3 (1994) no. 4, pp. 287-302
[4] Theory of ROOF walks, 2008 http://www.reed.edu/physics/faculty/crandall/papers/ROOF11.pdf
[5] Egy Kürschák-féle elemi számelméleti tétel általánosítása, Mat. Fiz. Lapok, Volume 39 (1932), pp. 17-24
[6] p-Integral harmonic sums, Discrete Math., Volume 91 (1991) no. 3, pp. 249-257
[7] Unsolved Problems in Number Theory, Problem Books in Mathematics, Springer-Verlag, New York, 2004
[8] Random walks with decreasing steps, 1998 https://www.calpoly.edu/~kmorriso/Research/RandomWalks.pdf
[9] Cosine products, Fourier transforms, and random sums, Amer. Math. Mon., Volume 102 (1995) no. 8, pp. 716-724 (MR1357488)
[10] Zeros and growth of entire functions of order 1 and maximal type with an application to the random signs problem, Math. Z., Volume 175 (1980) no. 3, pp. 189-217
[11] http://pari.math.u-bordeaux.fr/ (Bordeaux, PARI/GP, version 2.6.0, 2013, from)
[12] Highly composite numbers, Ramanujan J., Volume 1 (1997) no. 2, pp. 119-153 (annotated and with a foreword by Jean-Louis Nicolas and Guy Robin)
[13] Combinatorial Identities, Robert E. Krieger Publishing Co., Huntington, NY, USA, 1979 (reprint of the 1968 original)
[14] Handbook of Number Theory. I, Springer, Dordrecht, The Netherlands, 2006 (second printing of the 1996 original)
[15] On the p-adic valuation of harmonic numbers, J. Number Theory, Volume 166 (2016), pp. 41-46
[16] Random harmonic series, Amer. Math. Mon., Volume 110 (2003) no. 5, pp. 407-416
[17] Concise Encyclopedia of Mathematics, CRC Press, 2002
[18] On certain properties of prime numbers, Q. J. Pure Appl. Math., Volume 5 (1862), pp. 35-39
[19] On certain properties of harmonic numbers, J. Number Theory, Volume 175 (2017), pp. 66-86
Cited by Sources: