Lie algebras/Differential geometry
Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds
Comptes Rendus. Mathématique, Volume 356 (2018) no. 8, pp. 846-851.

In this paper, we investigate left-invariant geodesic orbit metrics on connected simple Lie groups, where the metrics are formed by the structures of flag manifolds. We prove that all these left-invariant geodesic orbit metrics on simple Lie groups are naturally reductive.

Dans cet article, nous étudions les métriques à géodésiques homogènes, invariantes à gauche, sur des groupes de Lie simples connexes, où les métriques sont définies par les structures de variétés de drapeaux. Nous montrons que toutes ces métriques à géodésiques homogènes invariantes à gauche sur des groupes de Lie simples sont naturellement réductives.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.06.004
Chen, Huibin 1; Chen, Zhiqi 1; Wolf, Joseph A. 2

1 School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, PR China
2 Department of Mathematics, University of California, Berkeley CA 94720-3840, USA
@article{CRMATH_2018__356_8_846_0,
     author = {Chen, Huibin and Chen, Zhiqi and Wolf, Joseph A.},
     title = {Geodesic orbit metrics on compact simple {Lie} groups arising from flag manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {846--851},
     publisher = {Elsevier},
     volume = {356},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crma.2018.06.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.06.004/}
}
TY  - JOUR
AU  - Chen, Huibin
AU  - Chen, Zhiqi
AU  - Wolf, Joseph A.
TI  - Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 846
EP  - 851
VL  - 356
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.06.004/
DO  - 10.1016/j.crma.2018.06.004
LA  - en
ID  - CRMATH_2018__356_8_846_0
ER  - 
%0 Journal Article
%A Chen, Huibin
%A Chen, Zhiqi
%A Wolf, Joseph A.
%T Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds
%J Comptes Rendus. Mathématique
%D 2018
%P 846-851
%V 356
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.06.004/
%R 10.1016/j.crma.2018.06.004
%G en
%F CRMATH_2018__356_8_846_0
Chen, Huibin; Chen, Zhiqi; Wolf, Joseph A. Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds. Comptes Rendus. Mathématique, Volume 356 (2018) no. 8, pp. 846-851. doi : 10.1016/j.crma.2018.06.004. http://www.numdam.org/articles/10.1016/j.crma.2018.06.004/

[1] Alekseevsky, D.V. Flag manifolds, Sb. Rad., Volume 11 (1997), pp. 3-35

[2] Alekseevsky, D.V.; Arvanitoyeorgos, A. Riemannian flag manifolds with homogeneous geodesics, Trans. Amer. Math. Soc., Volume 359 (2007), pp. 3769-3789

[3] Alekseevsky, D.V.; Nikonorov, Yu.G. Compact Riemannian manifolds with homogeneous geodesics, SIGMA, Volume 5 (2009)

[4] Alekseevsky, D.V.; Perelomov, A.M. Invariant Kähler–Einstein metrics on compact homogeneous spaces, Funct. Anal. Appl., Volume 20 (1986), pp. 171-182

[5] Arvanitoyeorgos, A. An Introduction to Lie Groups and the Geometry of Homogeneous Spaces, vol. 22, American Mathematical Society, 2003

[6] Arvanitoyeorgos, A.; Wang, Y.; Zhao, G. Riemannian g.o. metrics in certain M-spaces, Differ. Geom. Appl., Volume 54 (2017), pp. 59-70

[7] Chen, H.; Chen, Z.; Deng, S. Compact simple Lie groups admitting left-invariant Einstein metrics that are not geodesic orbit, C. R. Acad. Sci. Paris, Ser. I, Volume 356 (2018) no. 1, pp. 81-84

[8] D'Atri, J.E.; Ziller, W. Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc., Volume 19 (1979) no. 215

[9] Kowalski, O.; Vanhecke, L. Riemannian manifolds with homogeneous geodesics, Boll. Unione Mat. Ital., B (7), Volume 5 (1991) no. 1, pp. 189-246

[10] Nikonorov, Yu.G. Geodesic orbit Riemannian metrics on spheres, Vladikavkaz. Mat. Zh., Volume 15 (2013) no. 3, pp. 67-76

[11] Nikonorov, Y.G. On left-invariant Einstein Riemannian metrics that are not geodesic orbit, Transform. Groups (2018), pp. 1-20 | DOI

[12] Ochiai, T.; Takahashi, T. The group of isometries of a left invariant Riemannian metric on a Lie group, Math. Ann., Volume 223 (1976) no. 1, pp. 91-96

[13] Tamaru, H. Riemannian g.o. spaces fibered over irreducible symmetric spaces, Osaka J. Math., Volume 36 (1999), pp. 835-851

[14] Wolf, J.A. Spaces of Constant Curvature, McGraw-Hill Book Company, New York, 1967 Current (sixth) edition:, 2011, American Mathematical Society The result quoted is the same in all editions

[15] Wolf, J.A. The action of a real semisimple group on a complex flag manifold, I: orbit structure and holomorphic arc components, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 1121-1237

Cited by Sources: