Functional analysis
Lp + Lq and Lp ∩ Lq are not isomorphic for all 1 ≤ p,q ≤ ∞, p ≠ q
Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 661-665.

We prove that if $1≤p,q≤∞$, then the spaces $Lp+Lq$ and $Lp∩Lq$ are isomorphic if and only if $p=q$. In particular, $L2+L∞$ and $L2∩L∞$ are not isomorphic, which is an answer to a question formulated in [2].

Nous prouvons que si $1≤p,q≤∞$, alors les espaces $Lp+Lq$ et $Lp∩Lq$ sont isomorphes si et seulement si $p=q$. En particulier, $L2+L∞$ et $L2∩L∞$ ne sont pas isomorphes, ce qui est une réponse à une question formulée dans [2].

Accepted:
Published online:
DOI: 10.1016/j.crma.2018.04.019
Astashkin, Sergey V. 1; Maligranda, Lech 2

1 Department of Mathematics, Samara National Research University, Moskovskoye shosse 34, 443086, Samara, Russia
2 Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden
@article{CRMATH_2018__356_6_661_0,
author = {Astashkin, Sergey V. and Maligranda, Lech},
title = {\protect\emph{L}\protect\textsubscript{\protect\emph{p}} + \protect\emph{L}\protect\textsubscript{\protect\emph{q}} and {\protect\emph{L}\protect\textsubscript{\protect\emph{p}} \ensuremath{\cap} \protect\emph{L}\protect\textsubscript{\protect\emph{q}}} are not isomorphic for all 1 \ensuremath{\leq} \protect\emph{p},\protect\emph{q} \ensuremath{\leq} \ensuremath{\infty}, \protect\emph{p} \ensuremath{\neq} \protect\emph{q}},
journal = {Comptes Rendus. Math\'ematique},
pages = {661--665},
publisher = {Elsevier},
volume = {356},
number = {6},
year = {2018},
doi = {10.1016/j.crma.2018.04.019},
language = {en},
url = {http://www.numdam.org/articles/10.1016/j.crma.2018.04.019/}
}
TY  - JOUR
AU  - Astashkin, Sergey V.
AU  - Maligranda, Lech
TI  - Lp + Lq and Lp ∩ Lq are not isomorphic for all 1 ≤ p,q ≤ ∞, p ≠ q
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 661
EP  - 665
VL  - 356
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.04.019/
DO  - 10.1016/j.crma.2018.04.019
LA  - en
ID  - CRMATH_2018__356_6_661_0
ER  - 
%0 Journal Article
%A Astashkin, Sergey V.
%A Maligranda, Lech
%T Lp + Lq and Lp ∩ Lq are not isomorphic for all 1 ≤ p,q ≤ ∞, p ≠ q
%J Comptes Rendus. Mathématique
%D 2018
%P 661-665
%V 356
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.04.019/
%R 10.1016/j.crma.2018.04.019
%G en
%F CRMATH_2018__356_6_661_0
Astashkin, Sergey V.; Maligranda, Lech. Lp + Lq and Lp ∩ Lq are not isomorphic for all 1 ≤ p,q ≤ ∞, p ≠ q. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 661-665. doi : 10.1016/j.crma.2018.04.019. http://www.numdam.org/articles/10.1016/j.crma.2018.04.019/

[1] Albiac, F.; Kalton, N.J. Topics in Banach Space Theory, Springer-Verlag, New York, 2006

[2] Astashkin, S.V.; Maligranda, L. $Lp+L∞$ and $Lp∩L∞$ are not isomorphic for all $1≤p<∞,p≠2$, Proc. Amer. Math. Soc., Volume 146 (2018) no. 5, pp. 2181-2194

[3] Bennett, C.; Sharpley, R. Interpolation of Operators, Academic Press, Boston, 1988

[4] Bergh, J.; Löfström, J. Interpolation Spaces. An Introduction, Springer-Verlag, Berlin–New York, 1976

[5] Carothers, N.L.; Dilworth, S.J. Some Banach space embeddings of classical function spaces, Bull. Aust. Math. Soc., Volume 43 (1991) no. 1, pp. 73-77

[6] Dilworth, S.J. Intersection of Lebesgue spaces $L1$ and $L2$, Proc. Amer. Math. Soc., Volume 103 (1988) no. 4, pp. 1185-1188

[7] Dilworth, S.J. A scale of linear spaces related to the $Lp$ scale, Ill. J. Math., Volume 34 (1990) no. 1, pp. 140-158

[8] Holmstedt, T. Interpolation of quasi-normed spaces, Math. Scand., Volume 26 (1970), pp. 177-199

[9] Johnson, W.B.; Maurey, B.; Schechtman, G.; Tzafriri, L. Symmetric structures in Banach spaces, Mem. Amer. Math. Soc., Volume 19 (1979) no. 217 (v+298 p)

[10] Krasnosel'skiĭ, M.A.; Rutickiĭ, Ja.B. Convex Functions and Orlicz Spaces, Noordhoff, Groningen, The Netherlands, 1961

[11] Krein, S.G.; Petunin, Yu.I.; Semenov, E.M. Interpolation of Linear Operators, Amer. Math. Soc., Providence, RI, 1982

[12] Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces, II. Function Spaces, Springer-Verlag, Berlin–New York, 1979

[13] Maligranda, L. The K-functional for symmetric spaces, Lect. Notes Math., Volume 1070 (1984), pp. 169-182

[14] Maligranda, L. Orlicz Spaces and Interpolation, Semin. Math., vol. 5, University of Campinas, Campinas, Brazil, 1989

[15] Rao, M.M.; Ren, Z.D. Theory of Orlicz Spaces, Marcel Dekker, New York, 1991

Cited by Sources: