Differential geometry
Compact embedded minimal surfaces in the Berger sphere
Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 333-339.

Choe and Soret [1] constructed infinitely many compact embedded minimal surfaces in S3 by desingularizing Clifford tori which meet each other along a great circle at the angle of the same size. We show their method works with some modifications to construct compact embedded minimal surfaces in the Berger sphere as well.

Choe et Soret [1] ont construit une infinité de surfaces minimales compactes plongées dans S3 en désingularisant deux tores de Clifford qui se rencontrent le long d'un grand cercle à un angle constant de la même taille. Nous montrons que leur méthode fonctionne également, avec quelques modifications, pour construire des surfaces minimales compactes plongées dans la sphère de Berger.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.01.011
Shin, Heayong 1, 2; Kim, Young Wook 3; Koh, Sung-Eun 4; Lee, Hyung Yong 3; Yang, Seong-Deog 3

1 Department of Mathematics, Chung-Ang University, Seoul 06974, Republic of Korea
2 Department of Mathematics, KIAS, Seoul 20455, Republic of Korea
3 Department of Mathematics, Korea University, Seoul 02841, Republic of Korea
4 Department of Mathematics, Konkuk University, 05029, Republic of Korea
@article{CRMATH_2018__356_3_333_0,
     author = {Shin, Heayong and Kim, Young Wook and Koh, Sung-Eun and Lee, Hyung Yong and Yang, Seong-Deog},
     title = {Compact embedded minimal surfaces in the {Berger} sphere},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {333--339},
     publisher = {Elsevier},
     volume = {356},
     number = {3},
     year = {2018},
     doi = {10.1016/j.crma.2018.01.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.01.011/}
}
TY  - JOUR
AU  - Shin, Heayong
AU  - Kim, Young Wook
AU  - Koh, Sung-Eun
AU  - Lee, Hyung Yong
AU  - Yang, Seong-Deog
TI  - Compact embedded minimal surfaces in the Berger sphere
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 333
EP  - 339
VL  - 356
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.01.011/
DO  - 10.1016/j.crma.2018.01.011
LA  - en
ID  - CRMATH_2018__356_3_333_0
ER  - 
%0 Journal Article
%A Shin, Heayong
%A Kim, Young Wook
%A Koh, Sung-Eun
%A Lee, Hyung Yong
%A Yang, Seong-Deog
%T Compact embedded minimal surfaces in the Berger sphere
%J Comptes Rendus. Mathématique
%D 2018
%P 333-339
%V 356
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.01.011/
%R 10.1016/j.crma.2018.01.011
%G en
%F CRMATH_2018__356_3_333_0
Shin, Heayong; Kim, Young Wook; Koh, Sung-Eun; Lee, Hyung Yong; Yang, Seong-Deog. Compact embedded minimal surfaces in the Berger sphere. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 333-339. doi : 10.1016/j.crma.2018.01.011. http://www.numdam.org/articles/10.1016/j.crma.2018.01.011/

[1] Choe, J.; Soret, M. New minimal surfaces in S3 desingularizing the Clifford tori, Math. Ann., Volume 364 (2015), pp. 763-776

[2] Lawson, H.B. Jr. Complete minimal surfaces in S3, Ann. of Math. (2), Volume 92 (1970), pp. 335-374

[3] Meeks, W.W. III; Yau, S.-T. The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z., Volume 179 (1982), pp. 151-168

[4] Shin, H.; Kim, Y.W.; Koh, S.-E.; Lee, H.Y.; Yang, S.-D. Ruled minimal surfaces in the Berger sphere, Differ. Geom. Appl., Volume 40 (2015), pp. 209-222

[5] Torralbo, F. Compact minimal surfaces in the Berger sphere, Ann. Glob. Anal. Geom., Volume 41 (2012), pp. 391-405

Cited by Sources:

In the memory of Professor Ok Kyung Yoon.