Group theory/Differential geometry
On the difficulty of finding spines
Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 141-145.

We prove that the set of symplectic lattices in the Siegel space hg whose systoles generate a subspace of dimension at least 3 in R2g does not contain any Sp(2g,Z)-equivariant deformation retract of hg.

Nous montrons que l'ensemble des réseaux symplectiques dans l'espace de Siegel hg dont les systoles engendrent un sous-espace de dimension au moins 3 dans R2g ne contient aucun rétract par déformation Sp(2g,Z)-équivariant de hg.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.01.007
Lacoste, Cyril 1

1 IRMAR, Université de Rennes-1, 35000 Rennes, France
@article{CRMATH_2018__356_2_141_0,
     author = {Lacoste, Cyril},
     title = {On the difficulty of finding spines},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {141--145},
     publisher = {Elsevier},
     volume = {356},
     number = {2},
     year = {2018},
     doi = {10.1016/j.crma.2018.01.007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.01.007/}
}
TY  - JOUR
AU  - Lacoste, Cyril
TI  - On the difficulty of finding spines
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 141
EP  - 145
VL  - 356
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.01.007/
DO  - 10.1016/j.crma.2018.01.007
LA  - en
ID  - CRMATH_2018__356_2_141_0
ER  - 
%0 Journal Article
%A Lacoste, Cyril
%T On the difficulty of finding spines
%J Comptes Rendus. Mathématique
%D 2018
%P 141-145
%V 356
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.01.007/
%R 10.1016/j.crma.2018.01.007
%G en
%F CRMATH_2018__356_2_141_0
Lacoste, Cyril. On the difficulty of finding spines. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 141-145. doi : 10.1016/j.crma.2018.01.007. http://www.numdam.org/articles/10.1016/j.crma.2018.01.007/

[1] Aramayona, J.; Degrijse, D.; Martinez-Perez, C.; Souto, J. Geometric dimension of lattices in classical simple Lie groups, J. Topol., Volume 10 (2017), pp. 632-667

[2] Ash, A. Small-dimensional classifying spaces for arithmetic subgroups of general linear groups, Duke Math. J., Volume 51 (1984) no. 2, pp. 459-468

[3] Ash, A.; McConnell, M. Cohomology at infinity and the well-rounded retract for general linear groups, Duke Math. J., Volume 90 (1997) no. 3, pp. 549-576

[4] Bavard, C. Classes minimales de réseaux et rétractions géométriques équivariantes dans les espaces symétriques, J. Lond. Math. Soc. (2), Volume 64 (2001), pp. 275-286

[5] Bavard, C. Systole et invariant d'Hermite, J. Reine Angew. Math., Volume 482 (1997), pp. 93-120

[6] Borel, A.; Serre, J-P. Corners and arithmetic groups, Comment. Math. Helv., Volume 48 (1973), pp. 436-491

[7] Dutour-Sikiric̀, M.; Ellis, G.; Schürmann, A. On the integral homology of PSL(4,Z) and other arithmetic groups, J. Number Theory, Volume 131 (2011) no. 12, pp. 2368-2375

[8] Henn, H-W. The cohomology of SL(3,Z[1/2]), K-Theory, Volume 16 (1999) no. 4, pp. 299-359

[9] Hua, L.K.; Reiner, I. Automorphisms of the unimodular group, Trans. Amer. Math. Soc., Volume 71 (1951), pp. 331-348

[10] Ji, L. Well-rounded equivariant deformation retracts of Teichmüller spaces, Enseign. Math., Volume 60 (2014) no. 1–2, pp. 109-129

[11] Lacoste, C. Dimension rigidity of lattices in semisimple Lie groups, 2016 (to appear in “Groups, Geometry and Dynamics”) | arXiv

[12] MacPherson, R.; McConnell, M. Explicit reduction theory for Siegel modular threefolds, Invent. Math., Volume 111 (1993), pp. 575-625

[13] Martinet, J. Les réseaux parfaits des espaces euclidiens, Masson, 1996

[14] Pettet, A.; Souto, J. The spine which was no spine, Enseign. Math. (2), Volume 54 (2008) no. 3–4, pp. 273-285

[15] Pettet, A.; Souto, J. Minimality of the well-rounded retract, Geom. Topol., Volume 12 (2008) no. 3, pp. 1543-1556

[16] Soulé, C. The cohomology of SL(3,Z), Topology, Volume 17 (1978) no. 1, pp. 1-22

[17] Soulé, C. Thèse de doctorat d'État, Université Paris-7, 1978

[18] Yasaki, D. On the existence of spines for Q-rank 1 groups, Sel. Math. New Ser., Volume 12 (2006) no. 3–4, pp. 541-564

Cited by Sources: