Number theory/Mathematical analysis
Computation and theory of Euler sums of generalized hyperharmonic numbers
Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 243-252.

Recently, Dil and Boyadzhiev [10] proved an explicit formula for the sum of multiple harmonic numbers whose indices are the sequence ({0}r,1). In this paper, we show that the sums of multiple harmonic numbers whose indices are the sequence ({0}r,1;{1}k1) can be expressed in terms of (multiple) zeta values, (multiple) harmonic numbers, and Stirling numbers of the first kind, and give an explicit formula.

Récemment, Dil et Boyadzhiev [10] ont établi une formule explicite pour les sommes de nombres hyper-harmoniques multiples, dont les indices sont les suites ({0}r,1). Nous montrons ici que les sommes de nombres harmoniques multiples dont les indices sont ({0}r,1;{1}k1) peuvent être exprimées en termes de valeurs zêta (multiples), de nombres harmoniques (multiples) et de nombres de Stirling de première espèce. Nous donnons une formule explicite.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.01.004
Xu, Ce 1

1 School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
@article{CRMATH_2018__356_3_243_0,
     author = {Xu, Ce},
     title = {Computation and theory of {Euler} sums of generalized hyperharmonic numbers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {243--252},
     publisher = {Elsevier},
     volume = {356},
     number = {3},
     year = {2018},
     doi = {10.1016/j.crma.2018.01.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.01.004/}
}
TY  - JOUR
AU  - Xu, Ce
TI  - Computation and theory of Euler sums of generalized hyperharmonic numbers
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 243
EP  - 252
VL  - 356
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.01.004/
DO  - 10.1016/j.crma.2018.01.004
LA  - en
ID  - CRMATH_2018__356_3_243_0
ER  - 
%0 Journal Article
%A Xu, Ce
%T Computation and theory of Euler sums of generalized hyperharmonic numbers
%J Comptes Rendus. Mathématique
%D 2018
%P 243-252
%V 356
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.01.004/
%R 10.1016/j.crma.2018.01.004
%G en
%F CRMATH_2018__356_3_243_0
Xu, Ce. Computation and theory of Euler sums of generalized hyperharmonic numbers. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 243-252. doi : 10.1016/j.crma.2018.01.004. http://www.numdam.org/articles/10.1016/j.crma.2018.01.004/

[1] Bailey, D.H.; Borwein, J.M.; Girgensohn, R. Experimental evaluation of Euler sums, Exp. Math., Volume 3 (1994) no. 1, pp. 17-30

[2] Benjamin, A.T.; Gaebler, D.; Gaebler, R. A combinatorial approach to hyperharmonic numbers, Integers, Volume 3 (2003), pp. 1-9

[3] Berndt, B.C. Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1989

[4] Borwein, D.; Borwein, J.M.; Girgensohn, R. Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc. (2), Volume 38 (1995), pp. 277-294

[5] Borwein, J.; Borwein, P.; Girgensohn, R.; Parnes, S. Making sense of experimental mathematics, Math. Intell., Volume 18 (1996) no. 4, pp. 12-18

[6] Borwein, J.M.; Girgensohn, R. Evaluation of triple Euler sums, Electron. J. Comb., Volume 3 (1996) no. 1, pp. 2-7

[7] Borwein, J.M.; Zucker, I.J.; Boersma, J. The evaluation of character Euler double sums, Ramanujan J., Volume 15 (2008) no. 3, pp. 377-405

[8] Comtet, L. Advanced Combinatorics, D Reidel Publishing Company, Boston, MA, USA, 1974

[9] Conway, J.H.; Guy, R.K., Springer-Verlag, New York (1996), pp. 258-259

[10] Dil, A.; Boyadzhiev, K.N. Euler sums of hyperharmonic numbers, J. Number Theory, Volume 147 (2015), pp. 490-498

[11] Dil, A.; Kurt, V. Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math., Volume 5 (2009) no. 2, pp. 212-229

[12] Dil, A.; Mezö, I. A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput., Volume 206 (2008), pp. 942-951

[13] Flajolet, P.; Salvy, B. Euler sums and contour integral representations, Exp. Math., Volume 7 (1998) no. 1, pp. 15-35

[14] Göral, H.; Sertbas, D. Almost all hyperharmonic numbers are not integers, J. Number Theory, Volume 171 (2017), pp. 495-526

[15] Hessami Pilehrood, K.; Hessami Pilehrood, T.; Tauraso, R. New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner's series, Trans. Amer. Math. Soc., Volume 366 (2013) no. 6, pp. 3131-3159

[16] Kaneko, M.; Ohno, Y. On a kind of duality of multiple zeta-star values, Int. J. Number Theory, Volume 8 (2010) no. 8, pp. 1927-1932

[17] Mezö, I. Nonlinear Euler sums, Pac. J. Math., Volume 272 (2014), pp. 201-226

[18] Mezö, I.; Dil, A. Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, Volume 130 (2010), pp. 360-369

[19] Ohno, Y.; Zagier, D. Multiple zeta values of fixed weight, depth, and height, Indag. Math. (N.S.), Volume 12 (2001) no. 4, pp. 483-487

[20] Sofo, A. Quadratic alternating harmonic number sums, J. Number Theory, Volume 154 (2015), pp. 144-159

[21] Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012

[22] Xu, C. Multiple zeta values and Euler sums, J. Number Theory, Volume 177 (2017), pp. 443-478

[23] Xu, C. Euler sums of generalized hyperharmonic numbers | arXiv

[24] Xu, C.; Cheng, J. Some results on Euler sums, Funct. Approx. Comment. Math., Volume 54 (2016) no. 1, pp. 25-37

[25] Xu, C.; Yan, Y.; Shi, Z. Euler sums and integrals of polylogarithm functions, J. Number Theory, Volume 165 (2016), pp. 84-108

[26] Xu, C.; Zhang, M.; Zhu, W. Some evaluation of harmonic number sums, Integral Transforms Spec. Funct., Volume 27 (2016) no. 12, pp. 937-955

[27] Zagier, D. Evaluation of the multiple zeta values ζ(2,...,2,3,2,...,2), Ann. of Math. (2), Volume 175 (2012) no. 2, pp. 977-1000

Cited by Sources: