Differential geometry
A remark on the Bismut–Ricci form on 2-step nilmanifolds
Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 222-226.

In this note, we observe that, on a 2-step nilpotent Lie group equipped with a left-invariant SKT structure, the (1,1)-part of the Bismut–Ricci form is seminegative definite. As an application, we give a simplified proof of the non-existence of invariant SKT static metrics on 2-step nilmanifolds and of the existence of a long-time solution to the pluriclosed flow in 2-step nilmanifolds.

Nous observons que, sur un groupe de Lie nilpotent de classe ≤2, équipé d'une structure de Kähler forte avec torsion (SKT), invariante à gauche, la partie (1,1) de la forme de Bismut–Ricci est définie semi-négative. Comme application, nous donnons une démonstration simplifée de la non-existence d'une métrique statique SKT sur un espace homogène sous l'action d'un groupe nilpotent de classe ≤2. Nous montrons également l'existence d'une solution à long terme du flot plurifermé dans ces mêmes espaces.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.01.002
Pujia, Mattia 1; Vezzoni, Luigi 1

1 Dipartimento di Matematica G. Peano, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
@article{CRMATH_2018__356_2_222_0,
     author = {Pujia, Mattia and Vezzoni, Luigi},
     title = {A remark on the {Bismut{\textendash}Ricci} form on 2-step nilmanifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {222--226},
     publisher = {Elsevier},
     volume = {356},
     number = {2},
     year = {2018},
     doi = {10.1016/j.crma.2018.01.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.01.002/}
}
TY  - JOUR
AU  - Pujia, Mattia
AU  - Vezzoni, Luigi
TI  - A remark on the Bismut–Ricci form on 2-step nilmanifolds
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 222
EP  - 226
VL  - 356
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.01.002/
DO  - 10.1016/j.crma.2018.01.002
LA  - en
ID  - CRMATH_2018__356_2_222_0
ER  - 
%0 Journal Article
%A Pujia, Mattia
%A Vezzoni, Luigi
%T A remark on the Bismut–Ricci form on 2-step nilmanifolds
%J Comptes Rendus. Mathématique
%D 2018
%P 222-226
%V 356
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.01.002/
%R 10.1016/j.crma.2018.01.002
%G en
%F CRMATH_2018__356_2_222_0
Pujia, Mattia; Vezzoni, Luigi. A remark on the Bismut–Ricci form on 2-step nilmanifolds. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 222-226. doi : 10.1016/j.crma.2018.01.002. http://www.numdam.org/articles/10.1016/j.crma.2018.01.002/

[1] Arroyo, R.; Lafuente, R. The long-time behavior of the homogeneous pluriclosed flow | arXiv

[2] Bismut, J.-M. A local index theorem for non-Kähler manifolds, Math. Ann., Volume 284 (1989) no. 4, pp. 681-699

[3] Boling, J. Homogeneous solutions of pluriclosed flow on closed complex surfaces, J. Geom. Anal., Volume 26 (2016) no. 3, pp. 2130-2154

[4] Enrietti, N. Static SKT metrics on Lie groups, Manuscr. Math., Volume 140 (2013) no. 3–4, pp. 557-571

[5] Enrietti, N.; Fino, A.; Vezzoni, L. Tamed symplectic forms and strong Kähler with torsion metrics, J. Symplectic Geom., Volume 10 (2012) no. 2, pp. 203-223

[6] Enrietti, N.; Fino, A.; Vezzoni, L. The pluriclosed flow on nilmanifolds and Tamed symplectic forms, J. Geom. Anal., Volume 25 (2015) no. 2, pp. 883-909

[7] Lauret, J. The Ricci flow for simply connected nilmanifolds, Commun. Anal. Geom., Volume 19 (2011) no. 5, pp. 831-854

[8] Streets, J.; Tian, G. A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. (2010), pp. 3101-3133

[9] Streets, J.; Tian, G. Regularity results for pluriclosed flow, Geom. Topol., Volume 17 (2013) no. 4, pp. 2389-2429

[10] Streets, J. Pluriclosed flow, Born–Infeld geometry, and rigidity results for generalized Kähler manifolds, Commun. Partial Differ. Equ., Volume 41 (2016) no. 2, pp. 318-374

[11] Streets, J. Pluriclosed flow on manifolds with globally generated bundles, Complex Manifolds, Volume 3 (2016), pp. 222-230

[12] Vezzoni, L. A note on canonical Ricci forms on 2-step nilmanifolds, Proc. Amer. Math. Soc., Volume 141 (2013) no. 1, pp. 325-333

Cited by Sources:

This work was supported by G.N.S.A.G.A. of I.N.d.A.M.