Theory of signals/Harmonic analysis
Frames of exponentials and sub-multitiles in LCA groups
Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 107-113.

In this note, we investigate the existence of frames of exponentials for L2(Ω) in the setting of LCA groups. Our main result shows that sub-multitiling properties of ΩGˆ with respect to a uniform lattice Γ of Gˆ guarantee the existence of a frame of exponentials with frequencies in a finite number of translates of the annihilator of Γ. We also prove the converse of this result and provide conditions for the existence of these frames. These conditions extend recent results on Riesz bases of exponentials and multitilings to frames.

Dans cette note, nous étudions l'existence de trames d'exponentielles pour L2(Ω) dans le cadre des groupes abéliens localement compacts. Notre résultat principal montre que les propriétés de sous-multipavage de ΩGˆ par rapport à un réseau Γ de Gˆ garantissent l'existence d'une trame d'exponentielles dont les fréquences appartiennent à une union finie de translatés de l'annulateur de Γ. On prouve aussi la réciproque de ce résultat et on donne des conditions pour l'existence de ces trames. Ces conditions étendent des résultats récents sur les bases de Riesz d'exponentielles et les multipavages au cadre des trames.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.12.002
Barbieri, Davide 1; Cabrelli, Carlos 2; Hernández, Eugenio 1; Luthy, Peter 3; Molter, Ursula 2; Mosquera, Carolina 2

1 Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
2 Departamento de Matemática, FCEyN, Universidad de Buenos Aires and IMAS-UBA-CONICET, Argentina
3 College of Mount Saint Vincent, Bronx, NY, USA
@article{CRMATH_2018__356_1_107_0,
     author = {Barbieri, Davide and Cabrelli, Carlos and Hern\'andez, Eugenio and Luthy, Peter and Molter, Ursula and Mosquera, Carolina},
     title = {Frames of exponentials and sub-multitiles in {LCA} groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {107--113},
     publisher = {Elsevier},
     volume = {356},
     number = {1},
     year = {2018},
     doi = {10.1016/j.crma.2017.12.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.12.002/}
}
TY  - JOUR
AU  - Barbieri, Davide
AU  - Cabrelli, Carlos
AU  - Hernández, Eugenio
AU  - Luthy, Peter
AU  - Molter, Ursula
AU  - Mosquera, Carolina
TI  - Frames of exponentials and sub-multitiles in LCA groups
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 107
EP  - 113
VL  - 356
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.12.002/
DO  - 10.1016/j.crma.2017.12.002
LA  - en
ID  - CRMATH_2018__356_1_107_0
ER  - 
%0 Journal Article
%A Barbieri, Davide
%A Cabrelli, Carlos
%A Hernández, Eugenio
%A Luthy, Peter
%A Molter, Ursula
%A Mosquera, Carolina
%T Frames of exponentials and sub-multitiles in LCA groups
%J Comptes Rendus. Mathématique
%D 2018
%P 107-113
%V 356
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.12.002/
%R 10.1016/j.crma.2017.12.002
%G en
%F CRMATH_2018__356_1_107_0
Barbieri, Davide; Cabrelli, Carlos; Hernández, Eugenio; Luthy, Peter; Molter, Ursula; Mosquera, Carolina. Frames of exponentials and sub-multitiles in LCA groups. Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 107-113. doi : 10.1016/j.crma.2017.12.002. http://www.numdam.org/articles/10.1016/j.crma.2017.12.002/

[1] Agora, E.; Antezana, J.; Cabrelli, C. Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups, Adv. Math., Volume 285 (2015), pp. 454-477

[2] Barbieri, D.; Hernández, E.; Mayeli, A. Lattice sub-tilings and frames in LCA groups, C. R. Acad. Sci. Paris, Ser. I, Volume 356 (2017) no. 2, pp. 193-199

[3] Cabrelli, C.; Paternostro, V. Shift-invariant spaces on LCA groups, J. Funct. Anal., Volume 258 (2010) no. 6, pp. 2034-2059

[4] Feldman, J.; Greenleaf, F.P. Existence of Borel transversals in groups, Pac. J. Math., Volume 25 (1968), pp. 455-461

[5] Fuglede, B. Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., Volume 16 (1974), pp. 101-121

[6] Grepstad, S.; Lev, N. Multi-tiling and Riesz basis, Adv. Math., Volume 252 (2014) no. 15, pp. 1-6

[7] Han, D.; Kornelson, K.; Larson, D.; Weber, E. Frames for Undergraduates, Student Mathematical Library, vol. 40, American Mathematical Society, 2007

[8] Hewitt, E.; Ross, K.A. Abstract Harmonic Analysis, Vol. I, Structure of Topological Groups, Integration Theory, Group Representations, Springer, 1979

[9] Kolountzakis, M. Multiple lattice tiles and Riesz bases of exponentials, Proc. Amer. Math. Soc., Volume 143 (2015), pp. 741-747

[10] Pedersen, S. Spectral theory of commuting self-adjoint partial differential operators, J. Funct. Anal., Volume 73 (1987), pp. 122-134

[11] Young, R.M. Introduction to Nonharmonic Fourier Series, Academic Press, 1980

Cited by Sources: