Let be a sequence of events on a probability space . We show that if where each , then
Soit une séquence d'événements dans un éspace de probabilité . On montre que, si où chaque , alors
Accepted:
Published online:
@article{CRMATH_2009__347_21-22_1313_0, author = {Feng, Chunrong and Li, Liangpan and Shen, Jian}, title = {On the {Borel{\textendash}Cantelli} lemma and its generalization}, journal = {Comptes Rendus. Math\'ematique}, pages = {1313--1316}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.09.011/} }
TY - JOUR AU - Feng, Chunrong AU - Li, Liangpan AU - Shen, Jian TI - On the Borel–Cantelli lemma and its generalization JO - Comptes Rendus. Mathématique PY - 2009 SP - 1313 EP - 1316 VL - 347 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.09.011/ DO - 10.1016/j.crma.2009.09.011 LA - en ID - CRMATH_2009__347_21-22_1313_0 ER -
%0 Journal Article %A Feng, Chunrong %A Li, Liangpan %A Shen, Jian %T On the Borel–Cantelli lemma and its generalization %J Comptes Rendus. Mathématique %D 2009 %P 1313-1316 %V 347 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.09.011/ %R 10.1016/j.crma.2009.09.011 %G en %F CRMATH_2009__347_21-22_1313_0
Feng, Chunrong; Li, Liangpan; Shen, Jian. On the Borel–Cantelli lemma and its generalization. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1313-1316. doi : 10.1016/j.crma.2009.09.011. http://www.numdam.org/articles/10.1016/j.crma.2009.09.011/
[1] On the Borel–Cantelli lemma and moments, Comment. Math. Univ. Carolin., Volume 47 (2006), pp. 669-679
[2] On the application of the Borel–Cantelli lemma, Trans. Amer. Math. Soc., Volume 72 (1952), pp. 179-186
[3] An inequality for probabilities, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 504-507
[4] On Cantor's series with convergent , Ann. Univ. Sci. Budapest. Eötvös Sect. Math., Volume 2 (1959), pp. 93-109
[5] A note on the Borel–Cantelli lemma, Illinois J. Math., Volume 8 (1964), pp. 248-251
[6] On the Erdös–Rényi generalization of the Borel–Cantelli lemma, Studia Sci. Math. Hungar., Volume 18 (1983), pp. 173-182
[7] On the sequence of partial maxima of some random sequence, Stochastic Process. Appl., Volume 16 (1983), pp. 85-98
[8] Probability Theory, North-Holland Series in Applied Mathematics and Mechanics, vol. 10, North-Holland Publishing Co., Amsterdam/London, 1970 (German version 1962, French version 1966, new Hungarian edition 1965)
[9] Principles of Random Walk, Van Nostrand, Princeton, 1964
[10] J. Yan, A simple proof of two generalized Borel–Cantelli lemmas, In memoriam Paul-André Meyer: Seminar on Probability Theory XXXIX, in: Lecture Notes in Mathematics, vol. 1874, Springer-Verlag, Berlin, 2006, pp. 77–79
Cited by Sources: