Partial Differential Equations
Nodal line structure of least energy nodal solutions for Lane–Emden problems
Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 767-771.

In this Note, we consider the Lane–Emden problem Δu=λ2|u|p2u with Dirichlet boundary conditions, where the domain Ω is an open bounded subset of R2, λ2 is the second eigenvalue of −Δ, and p>2. We prove that, if Ω is C2 and convex, the nodal line intersects ∂Ω when p is close to 2. In contrast, we also exhibit a connected — but not simply connected — domain Ω such that, for p close to 2, the nodal line does not intersect ∂Ω.

Soit l'équation Δu=λ2|u|p2u avec conditions au bord de Dirichlet, où ΩR2 est ouvert borné, λ2 la deuxième valeur propre de −Δ et p>2. Nous prouvons que, sur un convexe de classe C2, la ligne nodale de toute solution nodale d'énergie minimale intersecte ∂Ω pour p proche de 2. Par ailleurs, nous montrons également l'existence d'un ensemble connexe mais non simplement connexe, tel que, pour p proche de 2, la ligne nodale de toute solution nodale d'énergie minimale n'intersecte pas ∂Ω.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.04.023
Grumiau, Christopher 1; Troestler, Christophe 1

1 Institut de mathématique, Université de Mons-Hainaut, place du parc 20, B-7000 Mons, Belgium
@article{CRMATH_2009__347_13-14_767_0,
     author = {Grumiau, Christopher and Troestler, Christophe},
     title = {Nodal line structure of least energy nodal solutions for {Lane{\textendash}Emden} problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {767--771},
     publisher = {Elsevier},
     volume = {347},
     number = {13-14},
     year = {2009},
     doi = {10.1016/j.crma.2009.04.023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.04.023/}
}
TY  - JOUR
AU  - Grumiau, Christopher
AU  - Troestler, Christophe
TI  - Nodal line structure of least energy nodal solutions for Lane–Emden problems
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 767
EP  - 771
VL  - 347
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.04.023/
DO  - 10.1016/j.crma.2009.04.023
LA  - en
ID  - CRMATH_2009__347_13-14_767_0
ER  - 
%0 Journal Article
%A Grumiau, Christopher
%A Troestler, Christophe
%T Nodal line structure of least energy nodal solutions for Lane–Emden problems
%J Comptes Rendus. Mathématique
%D 2009
%P 767-771
%V 347
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.04.023/
%R 10.1016/j.crma.2009.04.023
%G en
%F CRMATH_2009__347_13-14_767_0
Grumiau, Christopher; Troestler, Christophe. Nodal line structure of least energy nodal solutions for Lane–Emden problems. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 767-771. doi : 10.1016/j.crma.2009.04.023. http://www.numdam.org/articles/10.1016/j.crma.2009.04.023/

[1] Aftalion, A.; Pacella, F. Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 5, pp. 339-344 MR MR2092460 (2005f:35086)

[2] Alessandrini, G. Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 142-154 MR MR1259610 (95d:35111)

[3] Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381 MR MR0370183 (51 #6412)

[4] Bartsch, T.; Weth, T.; Willem, M. Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math., Volume 96 (2005), pp. 1-18 (MR MR2177179)

[5] Bonheure, D.; Bouchez, V.; Grumiau, C.; Van Schaftingen, J. Asymptotics and symmetries of least energy nodal solutions of Lane–Emden problems with slow growth, Comm. Contemporary Math., Volume 10 (2008) no. 4, pp. 609-631 (MR MR2444849)

[6] H. Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983, Théorie et applications. [Theory and applications]. MR MR697382 (85a:46001)

[7] Castro, A.; Cossio, J.; Neuberger, J.M. A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math., Volume 27 (1997) no. 4, pp. 1041-1053 MR MR1627654 (99f:35056)

[8] Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry and related properties via the maximum principle, Comm. Math. Phys., Volume 68 (1979) no. 3, pp. 209-243 MR MR544879 (80h:35043)

[9] C. Grumiau, C. Troestler, Symmetries of least energy nodal solutions of Lane–Emden problems on radial domains, accepted for publication in the proceedings of the conference “Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems”, 2007

[10] Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T.; Nadirashvili, N. The nodal line of the second eigenfunction of the Laplacian in R2 can be closed, Duke Math. J., Volume 90 (1997) no. 3, pp. 631-640 MR MR1480548 (98m:35146)

[11] Jänich, K. Topology, Springer, 1984 MR MR734483 (85a:54001)

[12] Melas, A.D. On the nodal line of the second eigenfunction of the Laplacian in R2, J. Differential Geom., Volume 35 (1992) no. 1, pp. 255-263 MR MR1152231 (93g:35100)

[13] Neuberger, J.M. A numerical method for finding sign-changing solutions of superlinear Dirichlet problems, Nonlinear World, Volume 4 (1997) no. 1, pp. 73-83 MR MR1452506 (98c:65200)

[14] Pacella, F.; Weth, T. Symmetry of solutions to semilinear elliptic equations via Morse index, Proc. Amer. Math. Soc., Volume 135 (2007) no. 6, pp. 1753-1762 (electronic). MR MR2286085

[15] Willem, M. Principes d'analyse fonctionnelle, Cassini, 2007

Cited by Sources: