We consider the Ricci flow on the 3-dimensional complete noncompact manifold with nonnegative curvature operator, i.e., , and , as . We prove that the Ricci flow on such a manifold is nonsingular in any finite time.
Nous considérons le flot de Ricci sur la variété tridimensionnelle complète de courbure non négatif, c'est-à-dire et si . Nous démontrons que le flot de Ricci sur une telle variété est non singular pour tout temps fini.
Accepted:
Published online:
@article{CRMATH_2009__347_3-4_185_0, author = {Ma, Li and Zhu, Anqiang}, title = {Nonsingular {Ricci} flow on a noncompact manifold in dimension three}, journal = {Comptes Rendus. Math\'ematique}, pages = {185--190}, publisher = {Elsevier}, volume = {347}, number = {3-4}, year = {2009}, doi = {10.1016/j.crma.2008.12.002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.12.002/} }
TY - JOUR AU - Ma, Li AU - Zhu, Anqiang TI - Nonsingular Ricci flow on a noncompact manifold in dimension three JO - Comptes Rendus. Mathématique PY - 2009 SP - 185 EP - 190 VL - 347 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.12.002/ DO - 10.1016/j.crma.2008.12.002 LA - en ID - CRMATH_2009__347_3-4_185_0 ER -
%0 Journal Article %A Ma, Li %A Zhu, Anqiang %T Nonsingular Ricci flow on a noncompact manifold in dimension three %J Comptes Rendus. Mathématique %D 2009 %P 185-190 %V 347 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.12.002/ %R 10.1016/j.crma.2008.12.002 %G en %F CRMATH_2009__347_3-4_185_0
Ma, Li; Zhu, Anqiang. Nonsingular Ricci flow on a noncompact manifold in dimension three. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 185-190. doi : 10.1016/j.crma.2008.12.002. http://www.numdam.org/articles/10.1016/j.crma.2008.12.002/
[1] Pseudolocality for the Ricci flow and applications | arXiv
[2] Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975
[3] The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, RI, 2004
[4] Mass under the Ricci flow, Comm. Math. Phys., Volume 274 (2007) no. 1, pp. 65-80
[5] On complete open manifolds of positive curvature, Ann. of Math., Volume 90 (1969) no. 1, pp. 75-90
[6] The formation of singularities in the Ricci flow, Cambridge, MA, 1995, International Press, Cambridge, MA (1995), pp. 7-136
[7] Three-manifolds with positive Ricci curvature, J. Differential Geometry, Volume 17 (1982) no. 2, pp. 255-306
[8] A compactness property for solutions of the Ricci flow, Amer. J. Math., Volume 117 (1995) no. 3, pp. 545-572
[9] Notes on Perelman's paper | arXiv
[10] Ricci Flow and the Poincaré conjecture | arXiv
[11] Asymptotically flat Ricci flows, 2008 | arXiv
[12] The entropy for Ricci flow and its geometry applications, 2002 | arXiv
[13] Ricci flow with surgery on three-manifolds, 2003 | arXiv
[14] Finite time extinction time for the solutions to the Ricci flow on certain three-manifold, 2003 | arXiv
[15] Ricci deformation of the metric on complete noncompact Riemannian manifolds, J. Differential Geometry, Volume 30 (1989), pp. 303-394
[16] On the l function and the reduced volume of Perelman, 2004 http://www.math.ucsb.edu/yer/reduced.pdf (Available at)
Cited by Sources: