@article{ASENS_2007_4_40_3_487_0, author = {Cathelineau, Jean-Louis}, title = {Homology stability for orthogonal groups over algebraically closed fields}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {487--517}, publisher = {Elsevier}, volume = {Ser. 4, 40}, number = {3}, year = {2007}, doi = {10.1016/j.ansens.2007.03.001}, zbl = {1133.20037}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2007.03.001/} }
TY - JOUR AU - Cathelineau, Jean-Louis TI - Homology stability for orthogonal groups over algebraically closed fields JO - Annales scientifiques de l'École Normale Supérieure PY - 2007 SP - 487 EP - 517 VL - 40 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2007.03.001/ DO - 10.1016/j.ansens.2007.03.001 LA - en ID - ASENS_2007_4_40_3_487_0 ER -
%0 Journal Article %A Cathelineau, Jean-Louis %T Homology stability for orthogonal groups over algebraically closed fields %J Annales scientifiques de l'École Normale Supérieure %D 2007 %P 487-517 %V 40 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2007.03.001/ %R 10.1016/j.ansens.2007.03.001 %G en %F ASENS_2007_4_40_3_487_0
Cathelineau, Jean-Louis. Homology stability for orthogonal groups over algebraically closed fields. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 40 (2007) no. 3, pp. 487-517. doi : 10.1016/j.ansens.2007.03.001. http://www.numdam.org/articles/10.1016/j.ansens.2007.03.001/
[1] Homology stability for over a local ring, Trans. Amer. Math. Soc. 303 (1987) 413-429. | MR | Zbl
,[2] Homology stability for over a semi-local ring, Glasgow Math. J. 32 (1990) 255-259. | MR | Zbl
,[3] Homology of and made discrete: an application of edgewise subdivision, J. Pure Appl. Algebra 123 (1998) 131-152. | MR | Zbl
, , ,[4] Linear Algebraic Groups, Grad. Texts in Math., vol. 126, second revised ed., Springer-Verlag, 1991. | MR | Zbl
,[5] Cohomology of Groups, Grad. Texts in Math., vol. 87, Springer-Verlag, 1982. | MR | Zbl
,[6] Homology of tangent groups considered as discrete groups and scissors congruences, J. Pure Appl. Algebra 132 (1998) 9-25. | MR | Zbl
,[7] Scissors congruences and the bar and cobar constructions, J. Pure Appl. Algebra 181 (2003) 141-179. | MR | Zbl
,[8] Projective configurations, homology of orthogonal groups and Milnor K-theory, Duke Math. J. 121 (2004) 343-387. | MR | Zbl
,[9] Homology of orthogonal groups: a quadratic algebra, 30 (2003) 13-35. | MR | Zbl
,[10] The Pfaffian and the Lie algebra homology of skew-symmetric matrices, Math. Res. Let. 11 (2004) 315-326. | MR | Zbl
,[11] A generalization of a theorem of Vogtmann, J. Pure Appl. Algebra 44 (1987) 107-125. | MR | Zbl
,[12] Collinet G., Quelques propriétés homologiques du groupe , Thèse, Paris, 2002.
[13] Sur les groupes classiques, Hermann, Paris, 1958. | MR | Zbl
,[14] Algebras of polytopes and homology of flag complexes, Osaka J. Math. 19 (1982) 599-641. | MR | Zbl
,[15] Scissors Congruences, Group Homology and Characteristic Classes, Nankai Tracts in Mathematics, vol. 1, World Scientific, 2001. | MR | Zbl
,[16] Scissors congruences II, J. Pure Appl. Algebra 25 (1982) 159-195. | MR | Zbl
, ,[17] Homology of classical Lie groups made discrete II, J. Algebra 113 (1988) 215-260. | MR | Zbl
, , ,[18] Homology stability for classical groups over finite fields, in: Lecture Notes in Math., vol. 551, Springer-Verlag, 1976, pp. 290-302. | MR | Zbl
,[19] Homologie du groupe linéaire et K-théorie de Milnor des anneaux, J. Algebra 123 (1989) 27-59. | MR | Zbl
,[20] Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer Math. Soc. 12 (1999) 569-618. | MR | Zbl
,[21] A new approach to Matsumoto's theorem, K-Theory 4 (1990) 181-200. | MR | Zbl
,[22] Homology stability for linear groups, Invent. Math. 60 (1980) 269-295. | MR | Zbl
,[23] Théorie de Quillen et homologie du groupe orthogonal, Ann. of Math. 112 (1980) 207-257. | MR | Zbl
,[24] Le théorème fondamental de la K-théorie hermitienne, Ann. of Math. 112 (1980) 259-282. | MR | Zbl
,[25] The Algebraic Theory of Quadratic Forms, Benjamin, 1973. | MR | Zbl
,[26] Homology of symplectic and orthogonal algebras, Adv. in Math. 69 (1988) 93-108. | MR | Zbl
, ,[27] Algebraic K-theory of quadratic forms, Invent. Math. 9 (1970) 318-344. | MR | Zbl
,[28] Homology stability for unitary groups, Doc. Math. 7 (2002) 143-166. | MR | Zbl
, ,[29] Homology of the full linear group over a local ring and Milnor's K-theory, Math. SSSR Izvestija 34 (1990) 121-145. | MR | Zbl
, ,[30] Homological stabilization for the orthogonal and symplectic groups, J. Soviet Math. 52 (1990) 3165-3170. | MR | Zbl
,[31] On stabilization for orthogonal and symplectic algebraic K-theory, Leningrad Math. J. 1 (1990) 741-764. | MR | Zbl
,[32] Algebraic K-Theory and Its Applications, Grad. Text Math., vol. 147, Springer-Verlag, 1994. | MR | Zbl
,[33] Homology of classical Lie groups made discrete, I. Stability theorems and Schur multipliers, Comment. Math. Helv. 61 (1986) 308-347. | MR | Zbl
,[34] Hilbert's Third Problem: Scissors Congruence, Research Notes in Math., vol. 33, Pitman, 1979. | Zbl
,[35] Second homology of Lie groups made discrete, Comm. Algebra 5 (1977) 611-642. | MR | Zbl
, ,[36] Homology of , characteristic classes and Milnor K-theory, in: Lecture Notes in Math., vol. 1046, Springer-Verlag, 1984, pp. 357-375. | MR | Zbl
,[37] Stability in algebraic K-theory, in: Oberwolfach, 1980, Lecture Notes in Math., vol. 966, Springer-Verlag, 1982, pp. 303-333. | MR | Zbl
,[38] Homology stability for , Comm. Algebra 7 (1979) 9-38. | MR | Zbl
,[39] Spherical posets and homology stability for , Topology 20 (1981) 119-132. | MR | Zbl
,[40] A Stiefel complex for the orthogonal group of a field, Comment. Math. Helv. 57 (1982) 11-21. | MR | Zbl
,[41] An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge Univ. Press, 1994. | MR | Zbl
,Cited by Sources: