@article{ASENS_2006_4_39_3_381_0, author = {Bruin, Henk and Shen, Weixiao and Van Strien, Sebastian}, title = {Existence of unique {SRB-measures} is typical for real unicritical polynomial families}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {381--414}, publisher = {Elsevier}, volume = {Ser. 4, 39}, number = {3}, year = {2006}, doi = {10.1016/j.ansens.2006.02.001}, mrnumber = {2265674}, zbl = {05078689}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2006.02.001/} }
TY - JOUR AU - Bruin, Henk AU - Shen, Weixiao AU - Van Strien, Sebastian TI - Existence of unique SRB-measures is typical for real unicritical polynomial families JO - Annales scientifiques de l'École Normale Supérieure PY - 2006 SP - 381 EP - 414 VL - 39 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2006.02.001/ DO - 10.1016/j.ansens.2006.02.001 LA - en ID - ASENS_2006_4_39_3_381_0 ER -
%0 Journal Article %A Bruin, Henk %A Shen, Weixiao %A Van Strien, Sebastian %T Existence of unique SRB-measures is typical for real unicritical polynomial families %J Annales scientifiques de l'École Normale Supérieure %D 2006 %P 381-414 %V 39 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2006.02.001/ %R 10.1016/j.ansens.2006.02.001 %G en %F ASENS_2006_4_39_3_381_0
Bruin, Henk; Shen, Weixiao; Van Strien, Sebastian. Existence of unique SRB-measures is typical for real unicritical polynomial families. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 39 (2006) no. 3, pp. 381-414. doi : 10.1016/j.ansens.2006.02.001. http://www.numdam.org/articles/10.1016/j.ansens.2006.02.001/
[1] Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, NJ, 1966. | MR | Zbl
,[2] Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math. 154 (2003) 451-550. | MR | Zbl
, , ,[3] Statistical properties of unimodal maps: The quadratic family, Ann. of Math. 161 (2005) 831-881. | MR | Zbl
, ,[4] Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc. 85 (1957) 219-227. | MR | Zbl
,[5] Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. École Norm. Sup. 24 (1991) 737-749. | Numdam | MR | Zbl
, ,[6] Minimal Cantor systems and unimodal maps, J. Difference Eq. Appl. 9 (2003) 305-318. | MR | Zbl
,[7] Topological conditions for the existence of Cantor attractors, Trans. Amer. Math. Soc. 350 (1998) 2229-2263. | MR | Zbl
,[8] Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup. 36 (2003) 621-646. | Numdam | MR | Zbl
, , ,[9] Wild Cantor attractors exist, Ann. of Math. 143 (1996) 97-130. | MR | Zbl
, , , ,[10] Invariant measures exist without a growth condition, Commun. Math. Phys. 241 (2-3) (2003) 287-306. | MR | Zbl
, , ,[11] Douady A., Hubbard J., Dynamical study of complex polynomials, Part I and Part II, Mathematical Publications of Orsay 84-2, 85-4 (in French).
[12] On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (2) (1985) 287-343. | Numdam | MR | Zbl
, ,[13] Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Syst. 20 (2000) 1061-1078. | MR | Zbl
,[14] Induced expansion for quadratic polynomials, Ann. Sci École Norm. Súp. 29 (1996) 399-482. | Numdam
, ,[15] A First Course in Dynamics, with a Panorama of Recent Developments, Cambridge University Press, Cambridge, 2003. | MR | Zbl
, ,[16] Some remarks on recent results about S-unimodal maps, Ann. Inst. Henri Poincaré 53 (1990) 413-425. | Numdam | MR | Zbl
, ,[17] Kahn J., Holomorphic removability of Julia sets, IMS preprint ims98-11.
[18] Getting rid of the negative Schwarzian derivative condition, Ann. of Math. 152 (2000) 743-762. | MR | Zbl
,[19] Kozlovski O., Shen W., van Strien S., Rigidity for real polynomials, Ann. of Math., in press.
[20] Kozlovski O., Shen W., van Strien S., Density of Axiom A in dimension one, Ann. of Math., in press.
[21] Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. 140 (1994) 347-404, and Erratum Manuscript (2000). | MR | Zbl
,[22] Dynamics of quadratic polynomials. III. Parapuzzle and SRB measures, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. xii-xiii, 173-200. | MR | Zbl
,[23] Feigenbaum-Coullet-Tresser universality and Milnor's hairiness conjecture, Ann. of Math. 149 (2) (1999) 319-420. | MR | Zbl
,[24] Almost every real quadratic map is either regular or stochastic, Ann. of Math. 156 (2002) 1-78. | MR | Zbl
,[25] Complex Dynamics and Renormalization, Ann. of Math Stud., vol. 135, 1994. | MR | Zbl
,[26] Ergodic Theory and Differentiable Dynamics, Springer, New York, 1987. | MR | Zbl
,[27] Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Syst. 14 (2) (1994) 331-349. | MR | Zbl
,[28] Invariant measures for typical quadratic maps, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. 239-252. | Numdam | MR | Zbl
, ,[29] One-Dimensional Dynamics, Springer, Berlin, 1993. | MR | Zbl
, ,[30] Periodic orbits, externals rays and the Mandelbrot set: An expository account, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. xiii, 277-333. | Numdam | MR | Zbl
,[31] Invariant measures exist under a summability condition, Invent. Math. 105 (1991) 123-136. | MR | Zbl
, ,[32] Rivera-Letelier J., Rational maps with decay of geometry: Rigidity, Thurston's algorithm and local connectivity, IMS preprint ims00-09.
[33] Holomorphic motions and puzzles (following M. Shishikura), in: The Mandelbrot set theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge University Press, Cambridge, 2000, pp. 117-131. | MR | Zbl
,[34] Bounds for one-dimensional maps without inflection critical points, J. Math. Sci. Univ. Tokyo 10 (1) (2003) 41-88. | MR | Zbl
,[35] Decay geometry for unimodal maps: an elementary proof, Ann. of Math. (2) 163 (2) (2006) 383-404. | MR | Zbl
,[36] Shishikura M., Yoccoz puzzles, τ-functions and their applications, Unpublished.
[37] Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (2) (1991) 347-355. | MR | Zbl
,[38] Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc. 17 (2004) 749-782. | MR | Zbl
, ,[39] Yoccoz J.-C., Unpublished.
Cited by Sources: