Estimating the division rate and kernel in the fragmentation equation
Annales de l'I.H.P. Analyse non linéaire, Volume 35 (2018) no. 7, pp. 1847-1884.

We consider the fragmentation equation

ft(t,x)=B(x)f(t,x)+y=xy=k(y,x)B(y)f(t,y)dy,
and address the question of estimating the fragmentation parameters – i.e. the division rate B(x) and the fragmentation kernel k(y,x) – from measurements of the size distribution f(t,) at various times. This is a natural question for any application where the sizes of the particles are measured experimentally whereas the fragmentation rates are unknown, see for instance Xue and Radford (2013) [26] for amyloid fibril breakage. Under the assumption of a polynomial division rate B(x)=αxγ and a self-similar fragmentation kernel k(y,x)=1yk0(xy), we use the asymptotic behavior proved in Escobedo et al. (2004) [11] to obtain uniqueness of the triplet (α,γ,k0) and a representation formula for k0. To invert this formula, one of the delicate points is to prove that the Mellin transform of the asymptotic profile never vanishes, what we do through the use of the Cauchy integral.

DOI: 10.1016/j.anihpc.2018.03.004
Classification: 35Q92, 35R06, 35R09, 45Q05, 46F12, 30D05
Keywords: Non-linear inverse problem, Size-structured partial differential equation, Fragmentation equation, Mellin transform, Functional equation
@article{AIHPC_2018__35_7_1847_0,
     author = {Doumic, Marie and Escobedo, Miguel and Tournus, Magali},
     title = {Estimating the division rate and kernel in the fragmentation equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1847--1884},
     publisher = {Elsevier},
     volume = {35},
     number = {7},
     year = {2018},
     doi = {10.1016/j.anihpc.2018.03.004},
     mrnumber = {3906858},
     zbl = {1406.35427},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.004/}
}
TY  - JOUR
AU  - Doumic, Marie
AU  - Escobedo, Miguel
AU  - Tournus, Magali
TI  - Estimating the division rate and kernel in the fragmentation equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1847
EP  - 1884
VL  - 35
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.004/
DO  - 10.1016/j.anihpc.2018.03.004
LA  - en
ID  - AIHPC_2018__35_7_1847_0
ER  - 
%0 Journal Article
%A Doumic, Marie
%A Escobedo, Miguel
%A Tournus, Magali
%T Estimating the division rate and kernel in the fragmentation equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1847-1884
%V 35
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.004/
%R 10.1016/j.anihpc.2018.03.004
%G en
%F AIHPC_2018__35_7_1847_0
Doumic, Marie; Escobedo, Miguel; Tournus, Magali. Estimating the division rate and kernel in the fragmentation equation. Annales de l'I.H.P. Analyse non linéaire, Volume 35 (2018) no. 7, pp. 1847-1884. doi : 10.1016/j.anihpc.2018.03.004. http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.004/

[1] Balagué, D.; Cañizo, J.; Gabriel, P. Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates, Kinet. Relat. Models, Volume 6 (2013) no. 2, pp. 219–243 | DOI | MR | Zbl

[2] Balk, A.M.; Zakharov, V.E. Stability of weak turbulence Kolmogorov spectra, Transl. Am. Math. Soc., Volume 182 (1998), pp. 31–81 | MR | Zbl

[3] Bertoin, Jean; Martínez, Servet Fragmentation energy, Adv. Appl. Probab., Volume 37 (2005) no. 2, pp. 553–570 | MR | Zbl

[4] Bhattacharya, R.; Waymire, E.C. A Basic Course in Probability Theory, Universitext, Springer, New York, 2007 | MR | Zbl

[5] Bortz, D.M.; Byrne, E.C.; Mirzaev, I. Inverse problems for a class of conditional probability measure-dependent evolution equations, 2015 (arXiv preprint) | arXiv | MR

[6] Bourgeron, T.; Doumic, M.; Escobedo, M. Estimating the division rate of the self-similar growth-fragmentation equation, Inverse Probl., Volume 30 (28 January 2014) no. 2 | DOI | MR | Zbl

[7] Cáceres, M.J.; Cañizo, J.A.; Mischler, S. Rate of convergence to the remarkable state for fragmentation and growth-fragmentation equations, J. Math. Pures Appl., Volume 96 (2011) no. 4, pp. 334–362 | DOI | Zbl

[8] Doumic, M.; Hoffmann, M.; Reynaud, P.; Rivoirard, V. Nonparametric estimation of the division rate of a size-structured population, SIAM J. Numer. Anal., Volume 50 (2012) no. 2, pp. 925–950 | DOI | MR | Zbl

[9] Doumic Jauffret, M.; Gabriel, P. Eigenelements of a general aggregation–fragmentation model, Math. Models Methods Appl. Sci., Volume 20 (2010) no. 05, pp. 757–783 | DOI | MR | Zbl

[10] Doumic-Jauffret, M.; Perthame, B.; Zubelli, J. Numerical solution of an inverse problem in size-structured population dynamics, Inverse Probl., Volume 25 (February 2009) no. 4 | MR | Zbl

[11] Escobedo, M.; Mischler, S.; Ricard, M.R. On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 1, pp. 99–125 | DOI | Numdam | MR | Zbl

[12] V.H. Hoang, Estimating the division kernel of a size-structured population, working paper or preprint, December 2015. | Numdam | MR

[13] V.H. Hoang, T.M.P. Ngoc, V. Rivoirard, V.C. Tran, Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation, Working paper or preprint, October 2017.

[14] Hoffmann, M.; Olivier, A. Nonparametric estimation of the division rate of an age dependent branching process, December 2014 (arXiv preprint) | arXiv | MR

[15] Laurençot, P.; Mischler, S. On coalescence equations and related models, Modeling and Computational Methods for Kinetic Equations, Model. Simul. Sci. Eng. Technol, Birkhäuser Boston, Boston, MA, 2004, pp. 321–356 | DOI | MR | Zbl

[16] R. Lyons, Seventy years of Rajchman measures, 1993, dedicated to Jean-Pierre Kahane. | MR | Zbl

[17] Michel, P. Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., Volume 16 (2006) no. 7, suppl., pp. 1125–1153 | MR | Zbl

[18] Michel, P.; Mischler, S.; Perthame, B. General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., Volume 84 (2005) no. 9, pp. 1235–1260 | DOI | MR | Zbl

[19] Mischler, S.; Scher, J. Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. Henri Poincaré C, Anal. Non Linéaire, Volume 33 (2016) no. 3, pp. 849–898 | Numdam | MR | Zbl

[20] Misra, O.P.; Lavoine, J.L. Transform Analysis of Generalized Functions, North-Holland Mathematics Studies, Elsevier Science, 1986 | MR | Zbl

[21] Perthame, B.; Zubelli, J.P. On the inverse problem for a size-structured population model, Inverse Probl., Volume 23 (2007) no. 3, pp. 1037–1052 | DOI | MR | Zbl

[22] Remmert, Reinhold Wielandt's theorem about the Γ-function, Am. Math. Mon., Volume 103 (1996) no. 3, pp. 214–220 | MR | Zbl

[23] Robert, Lydia; Hoffmann, Marc; Krell, Nathalie; Aymerich, Stéphane; Robert, Jérôme; Doumic, Marie Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism, BMC Biol., Volume 12 (2014) no. 1, pp. 17

[24] Rouvière, F. Petit guide de calcul différentiel: à l'usage de la licence et de l'agrégation, Cassini, 2003

[25] Stewart, I.W. On the coagulation-fragmentation equation, Z. Angew. Math. Phys., Volume 41 (1990) no. 6, pp. 917–924 | DOI | MR | Zbl

[26] Xue, W-F.; Radford, S.E. An imaging and systems modeling approach to fibril breakage enables prediction of amyloid behavior, Biophys. J., Volume 105 (2013), pp. 2811–2819

Cited by Sources: