This paper is concerned with the parabolic Keller–Segel system
Dans cet article, nous étudions le système parabolique de Keller–Segel
Keywords: Keller–Segel system, Blow-up, Nondegeneracy
@article{AIHPC_2014__31_4_851_0, author = {Mizoguchi, Noriko and Souplet, Philippe}, title = {Nondegeneracy of blow-up points for the parabolic {Keller{\textendash}Segel} system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {851--875}, publisher = {Elsevier}, volume = {31}, number = {4}, year = {2014}, doi = {10.1016/j.anihpc.2013.07.007}, mrnumber = {3249815}, zbl = {1302.35075}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.07.007/} }
TY - JOUR AU - Mizoguchi, Noriko AU - Souplet, Philippe TI - Nondegeneracy of blow-up points for the parabolic Keller–Segel system JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 851 EP - 875 VL - 31 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.07.007/ DO - 10.1016/j.anihpc.2013.07.007 LA - en ID - AIHPC_2014__31_4_851_0 ER -
%0 Journal Article %A Mizoguchi, Noriko %A Souplet, Philippe %T Nondegeneracy of blow-up points for the parabolic Keller–Segel system %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 851-875 %V 31 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.07.007/ %R 10.1016/j.anihpc.2013.07.007 %G en %F AIHPC_2014__31_4_851_0
Mizoguchi, Noriko; Souplet, Philippe. Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 4, pp. 851-875. doi : 10.1016/j.anihpc.2013.07.007. http://www.numdam.org/articles/10.1016/j.anihpc.2013.07.007/
[1] Local and global solvability of some parabolic systems modeling chemotaxis, Adv. Math. Sci. Appl. 8 (1998), 715 -743 | MR | Zbl
,[2] The 8π-problem for radially symmetric solutions of a chemotaxis model in a disc, Topol. Methods Nonlinear Anal. 27 (2006), 133 -147 | MR | Zbl
, , , ,[3] Existence and nonexistence of solutions for a model of gravitational interaction of particles. I, Colloq. Math. 66 (1994), 319 -334 | EuDML | MR | Zbl
, ,[4] Infinite time aggregation for the critical Patlak–Keller–Segel model in , Comm. Pure Appl. Math. 61 (2008), 1449 -1481 | MR | Zbl
, , ,[5] Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations 44 (2006) | EuDML | MR | Zbl
, , ,[6] The parabolic–parabolic Keller–Segel model in , Comm. Math. Sci. 6 (2008), 417 -447 | MR | Zbl
, ,[7] Nonlinear aspects of chemotaxis, Math. Biosci. 56 (1981), 217 -237 | MR | Zbl
,[8] Chemotactic Collapse in Two Dimensions, Lecture Notes in Biomath. vol. 55 , Springer, Berlin (1984), 61 -66 | MR
, ,[9] Finite-time blow-up and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions, J. Differential Equations 252 (2012), 5832 -5851 | MR | Zbl
, ,[10] Finite-time blow-up in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2, Acta Appl. Math. (2013), http://dx.doi.org/10.1007/s10440-013-9832-5 | MR
, ,[11] Symmetrization techniques on unbounded domains: application to a chemotaxis system on , J. Differential Equations 145 (1998), 156 -183 | MR | Zbl
, , ,[12] Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal. TMA 72 (2010), 1044 -1064 | MR | Zbl
, ,[13] The two-dimensional Keller–Segel model after blow-up, Discrete Cont. Dynam. Syst., Ser. A 25 (2009), 109 -121 | MR | Zbl
, ,[14] Global behaviour of a reaction–diffusion system modelling chemotaxis, Math. Nachr. 195 (1998), 77 -114 | MR | Zbl
, ,[15] Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), 845 -884 | MR | Zbl
, ,[16] Asymptotic behavior of type I blow-up solutions to a parabolic–elliptic system of drift-diffusion type, Archive Rat. Mech. Anal. 201 (2011), 549 -573 | MR | Zbl
, , ,[17] Self-similar blow-up for a reaction–diffusion system, J. Comput. Appl. Math. 97 (1998), 99 -119 | MR | Zbl
, , ,[18] Singularity patterns in a chemotaxis model, Math. Ann. 306 (1996), 583 -623 | EuDML | MR | Zbl
, ,[19] A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Super. Pisa Cl. Sci. 24 (1997), 633 -683 | EuDML | Numdam | MR | Zbl
, ,[20] Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q. 10 (2002), 501 -543 | MR | Zbl
, ,[21] A user's guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), 183 -217 | MR | Zbl
, ,[22] Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 (2005), 52 -107 | MR | Zbl
, ,[23] On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), 819 -824 | MR | Zbl
, ,[24] On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305 -330 | MR | Zbl
,[25] Grow-up rate and refined asymptotics for a two-dimensional Patlak–Keller–Segel model in a disk, SIAM J. Math. Anal. 40 (2008), 1852 -1881 | MR | Zbl
, ,[26] Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), 399 -415 | Zbl
, ,[27] Local existence and finite time blow-up of solutions in the 2-D Keller–Segel system, J. Evol. Equ. 8 (2008), 353 -378 | MR | Zbl
, ,[28] Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr. , Amer. Math. Soc., Providence, RI (1968) | MR
, , ,[29] Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases, Indiana Univ. Math. J. 56 (2007), 1279 -1297 | MR | Zbl
, ,[30] Measure valued solutions of the 2D Keller–Segel system, Arch. Ration. Mech. Anal. 206 (2012), 31 -80 | MR | Zbl
, , ,[31] Type II blow-up solutions to a parabolic–elliptic system, Adv. Math. Sci. Appl. 17 (2007), 505 -545 | MR | Zbl
, ,[32] N. Mizoguchi, T. Senba, Refined asymptotics of blowup solutions to a simplified chemotaxis system, preprint. | MR
[33] A semilinear parabolic–elliptic chemotaxis system with critical mass in any space dimension, Nonlinearity (2013) | MR | Zbl
,[34] Semilinear parabolic problems define semiflows on spaces, Trans. Amer. Math. Soc. 278 (1983), 21 -55 | MR | Zbl
,[35] Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. 5 (1995), 581 -601 | MR | Zbl
,[36] Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl. 6 (2001), 37 -55 | EuDML | MR | Zbl
,[37] Chemotactic collapse in parabolic system of mathematical biology, Hiroshima Math. J. 30 (2000), 463 -497 | MR | Zbl
, , ,[38] Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac. 40 (1997), 411 -433 | MR | Zbl
, , ,[39] Blow-up behavior of solutions to a parabolic–elliptic system on higher dimensional domains, Discrete Cont. Dynam. Syst. 32 (2012), 3691 -3713 | MR | Zbl
, ,[40] Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol. 42 (1973), 63 -105
,[41] Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts (2007) | MR | Zbl
, ,[42] P. Raphaêl, R. Schweyer, On the stability of critical chemotactic aggregation, preprint, 2012. | MR
[43] Blowup behavior of radial solutions to Jäger–Luckhaus system in high dimensional domains, Funkcial. Ekvac. 48 (2005), 247 -271 | MR | Zbl
,[44] Grow-up rate of a radial solution for a parabolic–elliptic system in , Adv. Differential Equations 14 (2009), 1155 -1192 | MR | Zbl
,[45] Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term, J. Differential Equations 227 (2006), 333 -364 | MR | Zbl
, ,[46] ε-Regularity theorem and its application to the blow-up solutions of Keller–Segel systems in higher dimensions, J. Math. Anal. Appl. 364 (2010), 51 -70 | MR | Zbl
,[47] Free Energy and Self-Interacting Particles, Progr. Nonlinear Differential Equations Appl. vol. 62 , Birkhäuser Boston, Inc., Boston, MA (2005) | MR | Zbl
,[48] Applied Analysis. Mathematical Methods in Natural Science, Imperial College Press/World Scientific Publishing Co. Pte. Ltd., London/Hackensack, NJ (2011) | MR | Zbl
, ,[49] Point dynamics for a singular limit of the Keller–Segel model I & II, SIAM J. Appl. Math. 64 (2004), 1198 -1223 | MR | Zbl
,[50] Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl. (2013), http://dx.doi.org/10.1016/j.matpur.2013.01.020 | MR | Zbl
,Cited by Sources: