Existence and bifurcation of positive solutions to a Kirchhoff type equation
@article{AIHPC_2014__31_1_155_0, author = {Liang, Zhanping and Li, Fuyi and Shi, Junping}, title = {Positive solutions to {Kirchhoff} type equations with nonlinearity having prescribed asymptotic behavior}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {155--167}, publisher = {Elsevier}, volume = {31}, number = {1}, year = {2014}, doi = {10.1016/j.anihpc.2013.01.006}, mrnumber = {3165283}, zbl = {1288.35456}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.006/} }
TY - JOUR AU - Liang, Zhanping AU - Li, Fuyi AU - Shi, Junping TI - Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 155 EP - 167 VL - 31 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.006/ DO - 10.1016/j.anihpc.2013.01.006 LA - en ID - AIHPC_2014__31_1_155_0 ER -
%0 Journal Article %A Liang, Zhanping %A Li, Fuyi %A Shi, Junping %T Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 155-167 %V 31 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.006/ %R 10.1016/j.anihpc.2013.01.006 %G en %F AIHPC_2014__31_1_155_0
Liang, Zhanping; Li, Fuyi; Shi, Junping. Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 1, pp. 155-167. doi : 10.1016/j.anihpc.2013.01.006. http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.006/
[1] Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 no. 1 (2005), 85-93 | MR | Zbl
, , ,[2] Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 no. 4 (1976), 620-709 | MR | Zbl
,[3] The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations 250 no. 4 (2011), 1876-1908 | MR | Zbl
, , ,[4] Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71 no. 10 (2009), 4883-4892 | MR | Zbl
, ,[5] Multiplicity of solutions for -polyharmonic elliptic Kirchhoff equations, Nonlinear Anal. 74 no. 17 (2011), 5962-5974 | MR | Zbl
, ,[6] Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 no. 2 (1992), 247-262 | EuDML | MR | Zbl
, ,[7] On global solvability of nonlinear viscoelastic equations in the analytic category, Math. Methods Appl. Sci. 17 no. 6 (1994), 477-486 | MR | Zbl
, ,[8] Nonlinear Functional Analysis, Springer-Verlag, Berlin (1985) | MR | Zbl
,[9] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 no. 3 (1979), 209-243 | MR | Zbl
, , ,[10] Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 no. 3 (2009), 1407-1414 | MR | Zbl
, ,[11] Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sin. Engl. Ser. 26 no. 3 (2010), 387-394 | MR | Zbl
, ,[12] Positive solutions of quasilinear elliptic equations, Topol. Methods Nonlinear Anal. 12 no. 1 (1998), 91-107 | MR | Zbl
,[13] Positive solution for with growing as at infinity, Appl. Math. Lett. 17 no. 8 (2004), 881-887 | MR | Zbl
, ,[14] Local conditions insuring bifurcation from the continuous spectrum, Math. Z. 232 no. 4 (1999), 651-664 | MR | Zbl
,[15] Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett. 16 no. 2 (2003), 243-248 | MR | Zbl
, ,[16] Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 no. 3 (2009), 1275-1287 | MR | Zbl
, ,[17] Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 no. 1 (2006), 246-255 | MR | Zbl
, ,[18] Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. vol. 65, Amer. Math. Soc., Washington, DC (1986) | MR | Zbl
,[19] Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin (1990) | MR | Zbl
,[20] Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal. 74 no. 4 (2011), 1212-1222 | MR | Zbl
, ,[21] Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett. 23 no. 4 (2010), 377-380 | MR | Zbl
, ,[22] Nonlinear functional analysis and its applications, II/B, Nonlinear Monotone Operators, Springer-Verlag, New York (1990) | MR | Zbl
,[23] Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl. 317 no. 2 (2006), 456-463 | MR | Zbl
, ,Cited by Sources: