In this paper, we deal with the existence of insensitizing controls for the Navier–Stokes equations in a bounded domain with Dirichlet boundary conditions. We prove that there exist controls insensitizing the -norm of the observation of the solution in an open subset of the domain, under suitable assumptions on the data. This problem is equivalent to an exact controllability result for a cascade system. First we prove a global Carleman inequality for the linearized Navier–Stokes system with right-hand side, which leads to the null controllability at any time . Then, we deduce a local null controllability result for the cascade system.
@article{AIHPC_2013__30_5_825_0, author = {Gueye, Mamadou}, title = {Insensitizing controls for the {Navier{\textendash}Stokes} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {825--844}, publisher = {Elsevier}, volume = {30}, number = {5}, year = {2013}, doi = {10.1016/j.anihpc.2012.09.005}, mrnumber = {3103172}, zbl = {06295443}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.09.005/} }
TY - JOUR AU - Gueye, Mamadou TI - Insensitizing controls for the Navier–Stokes equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 825 EP - 844 VL - 30 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.09.005/ DO - 10.1016/j.anihpc.2012.09.005 LA - en ID - AIHPC_2013__30_5_825_0 ER -
%0 Journal Article %A Gueye, Mamadou %T Insensitizing controls for the Navier–Stokes equations %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 825-844 %V 30 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.09.005/ %R 10.1016/j.anihpc.2012.09.005 %G en %F AIHPC_2013__30_5_825_0
Gueye, Mamadou. Insensitizing controls for the Navier–Stokes equations. Annales de l'I.H.P. Analyse non linéaire, Volume 30 (2013) no. 5, pp. 825-844. doi : 10.1016/j.anihpc.2012.09.005. http://www.numdam.org/articles/10.1016/j.anihpc.2012.09.005/
[1] Optimal Control, Contemporary Soviet Mathematics, Consultants Bureau, New York (1987) | MR | Zbl
, , ,[2] Null-controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var. 11 (2005), 426-448 | EuDML | Numdam | MR | Zbl
, , , ,[3] Controls insensitizing the norm of the solution of a semilinear heat equation, J. Math. Anal. Appl. 195 no. 3 (1995), 658-683 | MR | Zbl
, ,[4] Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Comm. Partial Differential Equations 29 no. 7–8 (2004), 39-72 | MR | Zbl
, , ,[5] Local null controllability of the two-dimensional Navier–Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl. (9) 92 no. 5 (2009), 528-545 | MR | Zbl
, ,[6] Insensitizing controls for the 1-D wave equation, SIAM J. Control Optim. 45 no. 5 (2006), 1758-1768 | MR | Zbl
,[7] Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var. 16 (2010), 247-274 | EuDML | Numdam | MR | Zbl
, ,[8] Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations 25 no. 1–2 (2000), 39-72 | MR | Zbl
,[9] Identification of the class of initial data for the insensitizing control of the heat equation, Commun. Pure Appl. Anal. 8 no. 1 (2009), 457-471 | MR | Zbl
, ,[10] Prolongement unique des solutions de lʼéquation de Stokes, Comm. Partial Differential Equations 21 (1996), 573-596 | MR | Zbl
, ,[11] Insensitizing controls for a large scale Ocean circulation model, C. R. Math. Acad. Sci. 337 no. 4 (2003), 265-270 | MR | Zbl
, , ,[12] Null controllability of the heat equation with boundary Fourier conditions: the linear case, ESAIM Control Optim. Calc. Var. 12 no. 3 (2006), 442-465 | EuDML | Numdam | MR | Zbl
, , , ,[13] Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl. (9) 83 no. 12 (2004), 1501-1542 | MR | Zbl
, , , ,[14] Controllability of Evolution Equations, Lect. Notes vol. 34, Seoul National University, Korea (1996) | MR | Zbl
, ,[15] Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal. 46 (2006), 123-162 | MR | Zbl
, ,[16] Null controllability of some systems of two parabolic equation with one control force, SIAM J. Control Optim. 46 no. 2 (2007), 379-394 | MR | Zbl
,[17] Controllability of systems of Stokes equations with one control force: existence of insensitizing controls, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 no. 6 (2007), 1029-1054 | EuDML | Numdam | MR | Zbl
,[18] Remarks on exact controllability for the Navier–Stokes equation, ESAIM Control Optim. Calc. Var. 6 (2001), 39-72 | EuDML | Numdam | MR | Zbl
,[19] The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York–London (1963) | MR
,[20] Quelques notions dans lʼanalyse et le contrôle de systèmes à données incomplètes, Proceedings of the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics, Málaga, 1989, Univ. Málaga (1990), 43-54 | MR | Zbl
,[21] Sentinelles pour les systèmes distribué à données incomplètes, Rech. Math. Appl. vol. 21, Masson, Paris (1992) | MR | Zbl
,[22] An example of ϵ-insensitizing controls for the heat equation with no intersecting observation and control regions, Appl. Math. Lett. 17 no. 8 (2004), 927-932 | MR | Zbl
, , ,[23] Some results on the controllability of coupled semilinear wave equations: the desensitizing control case, SIAM J. Control Optim. 49 no. 3 (2011), 1221-1238 | MR | Zbl
,[24] Navier–Stokes Equation. Theory and Numerical Analysis, Stud. Math. Appl. vol. 2, North Holland Publishing Co., Amsterdam (1977) | MR | Zbl
,[25] Insensitizing controls for a forward stochastic heat equation, J. Math. Anal. Appl. (2011) | MR | Zbl
, ,Cited by Sources: