Regularity for solutions of nonlocal, nonsymmetric equations
Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 6, pp. 833-859.

We study the regularity for solutions of fully nonlinear integro differential equations with respect to nonsymmetric kernels. More precisely, we assume that our operator is elliptic with respect to a family of integro differential linear operators where the symmetric parts of the kernels have a fixed homogeneity σ and the skew symmetric parts have strictly smaller homogeneity τ. We prove a weak ABP estimate and C 1,α regularity. Our estimates remain uniform as we take σ2 and τ1 so that this extends the regularity theory for elliptic differential equations with dependence on the gradient.

@article{AIHPC_2012__29_6_833_0,
     author = {Chang Lara, H\'ector and D\'avila, Gonzalo},
     title = {Regularity for solutions of nonlocal, nonsymmetric equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {833--859},
     publisher = {Elsevier},
     volume = {29},
     number = {6},
     year = {2012},
     doi = {10.1016/j.anihpc.2012.04.006},
     mrnumber = {2995098},
     zbl = {1317.35278},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.006/}
}
TY  - JOUR
AU  - Chang Lara, Héctor
AU  - Dávila, Gonzalo
TI  - Regularity for solutions of nonlocal, nonsymmetric equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 833
EP  - 859
VL  - 29
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.006/
DO  - 10.1016/j.anihpc.2012.04.006
LA  - en
ID  - AIHPC_2012__29_6_833_0
ER  - 
%0 Journal Article
%A Chang Lara, Héctor
%A Dávila, Gonzalo
%T Regularity for solutions of nonlocal, nonsymmetric equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 833-859
%V 29
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.006/
%R 10.1016/j.anihpc.2012.04.006
%G en
%F AIHPC_2012__29_6_833_0
Chang Lara, Héctor; Dávila, Gonzalo. Regularity for solutions of nonlocal, nonsymmetric equations. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 6, pp. 833-859. doi : 10.1016/j.anihpc.2012.04.006. http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.006/

[1] G. Barles, C. Imbert, Second-order elliptic integro differential equations: viscosity solutions theory revisited, Annales de lʼInstitut Henri Poincaré, Analyse Non Linéaire 3 (2008), 567-585 | EuDML | Numdam | MR | Zbl

[2] R.F. Bass, M. Kassmann, Hölder continuity of harmonic functions with respect to operators of variable order, Communications in Partial Differential Equations 8 (2005), 1249-1259 | MR | Zbl

[3] L. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications vol. 43, American Mathematical Society, Providence, RI (1995) | MR | Zbl

[4] L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear integro differential equations, Communications on Pure and Applied Mathematics 5 (2009), 597-638 | MR | Zbl

[5] L. Caffarelli, L. Silvestre, Regularity results for nonlocal equations by approximation, Archive for Rational Mechanics and Analysis 1 (2011), 59-88 | MR | Zbl

[6] L. Caffarelli, L. Silvestre, The Evans–Krylov theorem for non local fully non linear equations, Annals of Mathematics 2 (2011), 1163-1187 | MR | Zbl

[7] Y.C. Kim, K.A. Lee, Regularity results for fully nonlinear integro differential operators with nonsymmetric positive kernels, arXiv:1011.3565v2 [math.AP] | MR | Zbl

[8] L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana University Mathematics Journal 3 (2006), 1155-1174 | MR | Zbl

[9] H.M. Soner, Optimal control with state-space constraint II, SIAM Journal on Control and Optimization 6 (1986), 1110-1122 | MR | Zbl

Cited by Sources: