We discuss the Γ-convergence, under the appropriate scaling, of the energy functional
@article{AIHPC_2012__29_4_479_0, author = {Savin, Ovidiu and Valdinoci, Enrico}, title = {\protect\emph{\ensuremath{\Gamma}}-convergence for nonlocal phase transitions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {479--500}, publisher = {Elsevier}, volume = {29}, number = {4}, year = {2012}, doi = {10.1016/j.anihpc.2012.01.006}, mrnumber = {2948285}, zbl = {1253.49008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.006/} }
TY - JOUR AU - Savin, Ovidiu AU - Valdinoci, Enrico TI - Γ-convergence for nonlocal phase transitions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 479 EP - 500 VL - 29 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.006/ DO - 10.1016/j.anihpc.2012.01.006 LA - en ID - AIHPC_2012__29_4_479_0 ER -
%0 Journal Article %A Savin, Ovidiu %A Valdinoci, Enrico %T Γ-convergence for nonlocal phase transitions %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 479-500 %V 29 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.006/ %R 10.1016/j.anihpc.2012.01.006 %G en %F AIHPC_2012__29_4_479_0
Savin, Ovidiu; Valdinoci, Enrico. Γ-convergence for nonlocal phase transitions. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 4, pp. 479-500. doi : 10.1016/j.anihpc.2012.01.006. http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.006/
[1] G. Alberti, personal communication, 2010.
[2] A non-local anisotropic model for phase transitions: Asymptotic behaviour of rescaled energies, European J. Appl. Math. 9 no. 3 (1998), 261-284 | MR | Zbl
, ,[3] Surface tension in Ising systems with Kac potentials, J. Statist. Phys. 82 no. 3–4 (1996), 743-796 | MR | Zbl
, , , ,[4] Un résultat de perturbations singulières avec la norme , C. R. Acad. Sci. Paris Sér. I Math. 319 no. 4 (1994), 333-338 | MR | Zbl
, , ,[5] Phase transition with the line-tension effect, Arch. Rational Mech. Anal. 144 no. 1 (1998), 1-46 | MR | Zbl
, , ,[6] L. Ambrosio, G. de Philippis, L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, preprint, 2010. | MR | Zbl
[7] Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications vol. 22 (2002) | MR | Zbl
,[8] Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 no. 9 (2010), 1111-1144 | MR | Zbl
, , ,[9] Convergence of nonlocal threshold dynamics approximations to front propagation, Arch. Ration. Mech. Anal. 195 no. 1 (2010), 1-23 | MR | Zbl
, ,[10] Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations 41 no. 1–2 (2011), 203-240 | MR | Zbl
, ,[11] An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications vol. 8, Birkhäuser Boston, Inc., Boston, MA (1993) | MR
,[12] Sulla convergenza di alcune successioni dʼintegrali del tipo dellʼarea, Rend. Mat. (6) 8 (1975), 277-294 | MR | Zbl
,[13] Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 no. 6 (1975), 842-850 | MR | Zbl
, ,[14] The geometry of fractal sets, Cambridge Tracts in Mathematics vol. 85, Cambridge University Press, Cambridge (1986) | MR | Zbl
,[15] Aperiodic fractional obstacle problems, Adv. Math. 225 no. 6 (2010), 3502-3544 | MR | Zbl
,[16] Γ-limit of a phase-field model of dislocations, SIAM J. Math. Anal. 36 no. 6 (2005), 1943-1964 | MR | Zbl
, ,[17] A variational model for dislocations in the line tension limit, Arch. Ration. Mech. Anal. 181 no. 3 (2006), 535-578 | MR | Zbl
, ,[18] A singular perturbation result with a fractional norm, Variational Problems in Material Science, Progress in Nonlinear Differential Equations and Their Applications vol. 68, Birkhäuser, Basel (2006), 111-126 | MR | Zbl
, ,[19] Minimal surfaces and functions of bounded variation, Monographs in Mathematics vol. 80, Birkhäuser Verlag, Basel (1984) | MR | Zbl
,[20] Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Partial Differential Equations 36 no. 2 (2009), 173-210 | MR | Zbl
,[21] The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal. 98 no. 2 (1987), 123-142 | MR | Zbl
,[22] G. Palatucci, O. Savin, E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, preprint, 2010 (available from arxiv). | MR
[23] O. Savin, E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm, preprint, 2010. | MR
[24] The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana vol. 7, Springer-Verlag, UMI, Berlin, Bologna (2009) | MR | Zbl
,Cited by Sources: