We consider the quintic nonlinear Schrödinger equation (NLS) on the circle
Nous considérons lʼéquation de Schrödinger non linéaire (NLS) quintique sur le cercle
Keywords: Nonlinear Schrödinger equation, Resonant normal form, Energy exchange
Keywords: Forme normale, Equation de Schrödinger non linéaire, Résonances, Échange dʼénergie
@article{AIHPC_2012__29_3_455_0, author = {Gr\'ebert, Beno{\^\i}t and Thomann, Laurent}, title = {Resonant dynamics for the quintic nonlinear {Schr\"odinger} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {455--477}, publisher = {Elsevier}, volume = {29}, number = {3}, year = {2012}, doi = {10.1016/j.anihpc.2012.01.005}, mrnumber = {2926244}, zbl = {1259.37045}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.005/} }
TY - JOUR AU - Grébert, Benoît AU - Thomann, Laurent TI - Resonant dynamics for the quintic nonlinear Schrödinger equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 455 EP - 477 VL - 29 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.005/ DO - 10.1016/j.anihpc.2012.01.005 LA - en ID - AIHPC_2012__29_3_455_0 ER -
%0 Journal Article %A Grébert, Benoît %A Thomann, Laurent %T Resonant dynamics for the quintic nonlinear Schrödinger equation %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 455-477 %V 29 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.005/ %R 10.1016/j.anihpc.2012.01.005 %G en %F AIHPC_2012__29_3_455_0
Grébert, Benoît; Thomann, Laurent. Resonant dynamics for the quintic nonlinear Schrödinger equation. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 3, pp. 455-477. doi : 10.1016/j.anihpc.2012.01.005. http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.005/
[1] Mathematical Methods of Classical Mechanics, Grad. Texts in Math. vol. 60, Springer-Verlag, New York (1989) | MR
,[2] Birkhoff normal form for PDEs with tame modulus, Duke Math. J. 135 (2006), 507-567 | MR | Zbl
, ,[3] On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal. 229 no. 1 (2005), 62-94 | MR | Zbl
,[4] Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math. 181 no. 1 (2010), 39-113 | MR | Zbl
, , , , ,[5] A Nekhoroshev type theorem for the nonlinear Schrödinger equation on the torus, arXiv:1003.4845 | MR | Zbl
, ,[6] Birkhoff normal form and Hamiltonian PDEs, Partial Differential Equations and Applications, Sémin. Congr. vol. 15, Soc. Math. France, Paris (2007), 1-46 | MR | Zbl
,[7] Perturbations of the defocusing nonlinear Schrödinger equation, Milan J. Math. 71 (2003), 141-174 | MR | Zbl
, ,[8] The defocusing NLS equation and its normal form, arXiv:0907.3938 | MR | Zbl
, , ,[9] On the energy exchange between resonant modes in nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 no. 1 (2011), 127-134 | Numdam | MR | Zbl
, ,[10] Birkhoff coordinates for the focusing NLS equation, Comm. Math. Phys. 285 no. 3 (2009), 1087-1107 | MR | Zbl
, , , ,[11] Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math. 143 (1996), 149-179 | MR | Zbl
, ,[12] Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity, SIAM J. Math. Anal. 36 no. 6 (2005), 1965-1990 | MR | Zbl
, ,Cited by Sources: