Abstract convex optimal antiderivatives
Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 3, pp. 435-454.

Having studied families of antiderivatives and their envelopes in the setting of classical convex analysis, we now extend and apply these notions and results in settings of abstract convex analysis. Given partial data regarding a c-subdifferential, we consider the set of all c-convex c-antiderivatives that comply with the given data. Under a certain assumption, this set is not empty and contains both its lower and upper envelopes. We represent these optimal antiderivatives by explicit formulae. Some well known functions are, in fact, optimal c-convex c-antiderivatives. In one application, we point out a natural minimality property of the Fitzpatrick function of a c-monotone mapping, namely that it is a minimal antiderivative. In another application, in metric spaces, a constrained Lipschitz extension problem fits naturally the convexity notions we discuss here. It turns out that the optimal Lipschitz extensions are precisely the optimal antiderivatives. This approach yields explicit formulae for these extensions, the most particular case of which recovers the well known extensions due to McShane and Whitney.

DOI: 10.1016/j.anihpc.2012.01.004
Classification: 47H04, 47H05, 49N15, 52A01
Keywords: Abstract convexity, Convex function, Cyclically monotone operator, Fitzpatrick function, Lipschitz extension, Maximal monotone operator, Minimal antiderivative, Subdifferential operator
@article{AIHPC_2012__29_3_435_0,
     author = {Bartz, Sedi and Reich, Simeon},
     title = {Abstract convex optimal antiderivatives},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {435--454},
     publisher = {Elsevier},
     volume = {29},
     number = {3},
     year = {2012},
     doi = {10.1016/j.anihpc.2012.01.004},
     mrnumber = {2926243},
     zbl = {1259.47064},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.004/}
}
TY  - JOUR
AU  - Bartz, Sedi
AU  - Reich, Simeon
TI  - Abstract convex optimal antiderivatives
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 435
EP  - 454
VL  - 29
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.004/
DO  - 10.1016/j.anihpc.2012.01.004
LA  - en
ID  - AIHPC_2012__29_3_435_0
ER  - 
%0 Journal Article
%A Bartz, Sedi
%A Reich, Simeon
%T Abstract convex optimal antiderivatives
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 435-454
%V 29
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.004/
%R 10.1016/j.anihpc.2012.01.004
%G en
%F AIHPC_2012__29_3_435_0
Bartz, Sedi; Reich, Simeon. Abstract convex optimal antiderivatives. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 3, pp. 435-454. doi : 10.1016/j.anihpc.2012.01.004. http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.004/

[1] G. Aronsson, M.G. Crandall, P.A. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. 41 (2004), 439-505 | MR | Zbl

[2] S. Bartz, S. Reich, Minimal antiderivatives and monotonicity, Nonlinear Anal. 74 (2011), 59-66 | MR | Zbl

[3] H. Brezis, Liquid crystals and energy estimates for S 2 -valued maps, Theory and Applications of Liquid Crystals, Minneapolis, Minn., 1985, IMA Vol. Math. Appl. vol. 5, Springer, New York (1987), 31-52 | MR

[4] H. Brezis, J.-M. Coron, E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649-705 | MR | Zbl

[5] R.S. Burachik, A. Rubinov, Abstract convexity and augmented Lagrangians, SIAM J. Optim. 18 (2007), 413-436 | MR | Zbl

[6] J.J.M. Evers, H. Van Maaren, Duality principles in mathematics and their relations to conjugate functions, Nieuw Arch. Wiskunde 3 (1985), 23-68 | MR | Zbl

[7] S. Fitzpatrick, Representing monotone operators by convex functions, Workshop/Miniconference on Functional Analysis and Optimization, Canberra, 1988, Proceedings of the Centre for Mathematical Analysis, vol. 20, Australian National University, Canberra, Australia (1988), 59-65 | MR

[8] J.-B. Hiriart-Urruty, Extension of Lipschitz functions, J. Math. Anal. Appl. 77 (1980), 539-554 | MR | Zbl

[9] J.E. Martínez-Legaz, On lower subdifferentiable functions, Trends in Mathematical Optimization, Birkhäuser, Basel (1988), 197-232 | MR | Zbl

[10] E.J. Mcshane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842 | MR | Zbl

[11] J.J. Moreau, Inf-convolution, sous-additivité, convexité des fonctions numériques, J. Math. Pures Appl. 49 (1970), 109-154 | MR | Zbl

[12] J.-P. Penot, Monotonicity and dualities, Generalized Convexity and Related Topics, Springer, Berlin (2006), 399-414 | MR

[13] R.T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510 | MR | Zbl

[14] R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216 | MR | Zbl

[15] S. Rolewicz, Φ-convex functions defined on metric spaces, J. Math. Sci. 115 (2003), 2631-2652 | MR | Zbl

[16] A.M. Rubinov, Abstract Convexity and Global Optimization, Kluwer, Dordrecht (2000) | MR | Zbl

[17] I. Singer, Abstract Convex Analysis, Wiley–Interscience, New York (1997) | MR | Zbl

[18] C. Villani, Optimal Transport: Old and New, Springer, Berlin (2009) | MR | Zbl

[19] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89 | JFM | MR | Zbl

Cited by Sources: