@article{AIHPC_2008__25_6_1043_0, author = {Dolbeault, Jean and Fern\'andez, Javier}, title = {Localized minimizers of flat rotating gravitational systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1043--1071}, publisher = {Elsevier}, volume = {25}, number = {6}, year = {2008}, doi = {10.1016/j.anihpc.2007.01.001}, mrnumber = {2466321}, zbl = {1157.35112}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.01.001/} }
TY - JOUR AU - Dolbeault, Jean AU - Fernández, Javier TI - Localized minimizers of flat rotating gravitational systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 1043 EP - 1071 VL - 25 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2007.01.001/ DO - 10.1016/j.anihpc.2007.01.001 LA - en ID - AIHPC_2008__25_6_1043_0 ER -
%0 Journal Article %A Dolbeault, Jean %A Fernández, Javier %T Localized minimizers of flat rotating gravitational systems %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 1043-1071 %V 25 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2007.01.001/ %R 10.1016/j.anihpc.2007.01.001 %G en %F AIHPC_2008__25_6_1043_0
Dolbeault, Jean; Fernández, Javier. Localized minimizers of flat rotating gravitational systems. Annales de l'I.H.P. Analyse non linéaire, Volume 25 (2008) no. 6, pp. 1043-1071. doi : 10.1016/j.anihpc.2007.01.001. http://www.numdam.org/articles/10.1016/j.anihpc.2007.01.001/
[1] On conditions for non-linear stability of plane stationary curvilinear flows of an ideal fluid, Dokl. Akad. Nauk SSSR 162 (1965) 975-978. | MR | Zbl
,[2] An a priori estimate in the theory of hydrodynamic stability, Izv. Vyssh. Uchebn. Zaved. Mat. 1966 (1966) 3-5. | MR | Zbl
,[3] Equilibrium properties of the Vlasov functional: the generalized Poisson-Boltzmann-Emden equation, Rev. Modern Phys. 63 (1991) 129-148. | MR
,[4] Relative entropies for the Vlasov-Poisson system in bounded domains, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 867-872. | MR | Zbl
, ,[5] Relative entropies for kinetic equations in bounded domains (irreversibility, stationary solutions, uniqueness), Arch. Ration. Mech. Anal. 168 (2003) 253-298. | MR | Zbl
, ,[6] On an evolution system describing self-gravitating Fermi-Dirac particles, Adv. Differential Equations 9 (2004) 563-586. | MR | Zbl
, , ,[7] Nonisothermal systems of self-attracting Fermi-Dirac particles, in: Nonlocal Elliptic and Parabolic Problems, Banach Center Publ., vol. 66, Polish Acad. Sci., Warsaw, 2004, pp. 61-78. | MR | Zbl
, , ,[8] P. Biler, R. Stánczy, Parabolic-elliptic systems with general density-pressure relations, Tech. rep., Mathematical Institute of the University of Wrocław, 2004.
[9] Galactic Dynamics, Princeton University Press, Princeton, 1987. | Zbl
, ,[10] Compactness via symmetrization, J. Funct. Anal. 214 (2004) 40-73. | MR | Zbl
, ,[11] On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001) 229-258. | MR | Zbl
, ,[12] Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence, Phys. Rev. E (2003) 036108.
,[13] Generalized Fokker-Planck equations and effective thermodynamics, Phys. A 340 (2004) 57-65, News and expectations in thermostatistics. | MR
,[14] Generalized kinetic equations and effective thermodynamics, Banach Center Publ. 66 (2004) 79-102. | MR
,[15] Generalized thermodynamics and kinetic equations: Boltzmann, Landau, Kramers and Smoluchowski, Physica A 332 (2004) 89. | MR
,[16] Hamiltonian and Brownian systems with long-range interactions, Physica A 361 (2006) 55-80. | MR
,[17] Chapman-Enskog derivation of the generalized Smoluchowski equation, Physica A 341 (2004) 145-164. | MR
, , ,[18] On the analogy between self-gravitating Brownian particles and bacterial populations, in: Banach Center Publ., vol. 66, 2004, pp. 103. | MR | Zbl
, , , ,[19] Anomalous diffusion and collapse of self-gravitating Langevin particles in d dimensions, Phys. Rev. E 69 (2004) 016116.
, ,[20] Extensive Lyapounov functionals for moment-preserving evolution equations, C. R. Math. Acad. Sci. Paris, Ser. I 334 (2002) 429-434. | MR | Zbl
,[21] Existence of signed solutions for a semilinear elliptic boundary value problem, Differential Integral Equations 7 (1994) 293-299. | MR | Zbl
, , ,[22] On a semilinear elliptic problem in with a non-Lipschitzian nonlinearity, Adv. Differential Equations 1 (1996) 199-218. | MR | Zbl
, , ,[23] Monokinetic charged particle beams: qualitative behavior of the solutions of the Cauchy problem and 2d time-periodic solutions of the Vlasov-Poisson system, Comm. Partial Differential Equations 25 (2000) 1567-1647. | MR | Zbl
,[24] J. Dolbeault, P. Felmer, J. Mayorga-Zambrano, Compactness properties for trace-class operators and applications to quantum mechanics, Monatshefte für Mathematik (2008), in press. | MR | Zbl
[25] Stability for the gravitational Vlasov-Poisson system in dimension two, Comm. Partial Differential Equations 31 (2006) 1425-1449. | MR | Zbl
, , ,[26] Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Rational Mech. Anal. 186 (2007) 133-158. | MR | Zbl
, , , ,[27] Asymptotic behaviour for the Vlasov-Poisson system in the stellar-dynamics case, Arch. Ration. Mech. Anal. 171 (2004) 301-327. | MR | Zbl
, , ,[28] Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type, J. Differential Equations 191 (2003) 121-142. | MR | Zbl
, ,[29] Stability of disk-like galaxies. II: The Kuzmin disk, Analysis (Munich) 27 (2007) 405-424. | MR | Zbl
,[30] Stability of disk-like galaxies. I: Stability via reduction, Analysis (Munich) 26 (2006) 507-525. | MR | Zbl
, ,[31] Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986) 397-408. | MR | Zbl
, ,[32] Symmetry and related properties via the maximum principle, Commun. Math. Phys. 68 (1979) 209-243. | MR | Zbl
, , ,[33] Symmetry of positive solutions of nonlinear elliptic equations in , in: Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York, 1981, pp. 369-402. | MR | Zbl
, , ,[34] Approximation by homogenization and diffusion of kinetic equations, Comm. Partial Differential Equations 26 (2001) 537-569. | MR | Zbl
, ,[35] Existence and stability of Camm type steady states in galactic dynamics, Indiana Univ. Math. J. 48 (1999) 1237-1255. | MR | Zbl
, ,[36] Stable steady states in stellar dynamics, Arch. Ration. Mech. Anal. 147 (1999) 225-243. | MR | Zbl
, ,[37] Isotropic steady states in galactic dynamics, Commun. Math. Phys. 219 (2001) 607-629. | MR | Zbl
, ,[38] Stable models of elliptical galaxies, Mon. Not. R. Astronom. (2003).
, ,[39] A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Commun. Math. Phys. 271 (2007) 489-509. | MR | Zbl
, ,[40] Global existence and nonlinear stability for the relativistic Vlasov-Poisson system in the gravitational case, Indiana Univ. Math. J. 56 (2007) 2453-2488. | MR | Zbl
, ,[41] Orbital stability and singularity formation for Vlasov-Poisson systems, C. R. Math. Acad. Sci. Paris, Ser. I 341 (2005) 269-274. | MR | Zbl
, , ,[42] On uniformly rotating stars, Arch. Ration. Mech. Anal. 115 (1991) 367-393. | MR | Zbl
,[43] Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983) 349-374. | MR | Zbl
,[44] Analysis, Graduate Studies in Mathematics, vol. 14, second ed., American Mathematical Society, Providence, RI, 2001. | MR | Zbl
, ,[45] Rotating fluids with self-gravitation in bounded domains, Arch. Ration. Mech. Anal. 173 (2004) 345-377. | MR | Zbl
, ,[46] Existence and nonlinear stability of stationary states of the Schrödinger-Poisson system, J. Statist. Phys. 106 (2002) 1221-1239. | MR | Zbl
, , ,[47] Stable rotating binary stars and fluid in a tube, Houston J. Math. 32 (2006) 603-631, (electronic). | MR | Zbl
,[48] Statistical mechanics of gravitating systems, Phys. Rep. 188 (1990) 285-362. | MR
,[49] Non-linear stability for the Vlasov-Poisson system-the energy-Casimir method, Math. Methods Appl. Sci. 17 (1994) 1129-1140. | MR | Zbl
,[50] Flat steady states in stellar dynamics - existence and stability, Commun. Math. Phys. 205 (1999) 229-247. | MR | Zbl
,[51] Reduction and a concentration-compactness principle for energy-Casimir functionals, SIAM J. Math. Anal. 33 (2001) 896-912, (electronic). | MR | Zbl
,[52] Non-linear stability of gaseous stars, Arch. Ration. Mech. Anal. 168 (2003) 115-130. | MR | Zbl
,[53] Nonlinear stability of Newtonian galaxies and stars from a mathematical perspective, Ann. New York Acad. Sci. 1045 (2005) 103-119.
,[54] Orbital stability for polytropic galaxies, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 781-802. | Numdam | MR | Zbl
, ,[55] Steady states in galactic dynamics, Arch. Ration. Mech. Anal. 172 (2004) 1-19. | MR | Zbl
,[56] Partial symmetry and asymptotic behavior for some elliptic variational problems, Calc. Var. Partial Differential Equations 18 (2003) 57-75. | MR
, ,[57] Remarks on entropy and equilibrium states, Appl. Math. Lett. 12 (1999) 19-25. | MR | Zbl
,[58] Possible generalization of Boltzmann-Gibbs statistics, J. Statist. Phys. 52 (1988) 479-487. | MR | Zbl
,[59] On Arnol'd's variational principles in fluid mechanics, in: The Arnoldfest, Toronto, ON, 1997, Fields Inst. Commun., vol. 24, Amer. Math. Soc., Providence, RI, 1999, pp. 471-495. | Zbl
, ,[60] On nonlinear stability of polytropic galaxies, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 15-48. | Numdam | MR | Zbl
,[61] An extension of Arnol'd's second stability theorem for the Euler equations, Physica D 94 (1996) 161-167. | MR | Zbl
, ,Cited by Sources: