Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity
Annales de l'I.H.P. Analyse non linéaire, Volume 25 (2008) no. 1, pp. 201-213.
@article{AIHPC_2008__25_1_201_0,
     author = {Sivaloganathan, Jeyabal and Spector, Scott J.},
     title = {Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {201--213},
     publisher = {Elsevier},
     volume = {25},
     number = {1},
     year = {2008},
     doi = {10.1016/j.anihpc.2006.11.013},
     mrnumber = {2383087},
     zbl = {1137.74011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.013/}
}
TY  - JOUR
AU  - Sivaloganathan, Jeyabal
AU  - Spector, Scott J.
TI  - Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2008
SP  - 201
EP  - 213
VL  - 25
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.013/
DO  - 10.1016/j.anihpc.2006.11.013
LA  - en
ID  - AIHPC_2008__25_1_201_0
ER  - 
%0 Journal Article
%A Sivaloganathan, Jeyabal
%A Spector, Scott J.
%T Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity
%J Annales de l'I.H.P. Analyse non linéaire
%D 2008
%P 201-213
%V 25
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.013/
%R 10.1016/j.anihpc.2006.11.013
%G en
%F AIHPC_2008__25_1_201_0
Sivaloganathan, Jeyabal; Spector, Scott J. Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity. Annales de l'I.H.P. Analyse non linéaire, Volume 25 (2008) no. 1, pp. 201-213. doi : 10.1016/j.anihpc.2006.11.013. http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.013/

[1] Almgren F., Browder W., Lieb E.H., Co-area, liquid crystals, and minimal surfaces, in: Partial Differential Equations, Tianjin, 1986, Lecture Notes in Math., vol. 1306, Springer, 1988, pp. 1-22. | MR | Zbl

[2] Avellaneda M., Lin F.H., Fonctions quasi affines et minimisation de u p , C. R. Acad. Sci. Paris Sér. I Math. 306 (1988) 355-358. | MR

[3] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977) 337-403. | MR | Zbl

[4] Ball J.M., Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. A 306 (1982) 557-611. | MR | Zbl

[5] Ball J.M., Marsden J.E., Quasiconvexity at the boundary, positivity of the second variation and elastic stability, Arch. Rational Mech. Anal. 86 (1984) 251-277. | MR | Zbl

[6] Ball J.M., Murat F., W 1,p -quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984) 225-253. | MR | Zbl

[7] Bishop R.F., Hill R., Mott N.F., The theory of indentation and hardness tests, Proc. Phys. Soc. 57 (1945) 147-159.

[8] Brezis H., Coron J.-M., Lieb E.H., Harmonic maps with defects, Comm. Math. Phys. 107 (1986) 649-705. | MR | Zbl

[9] Conti S., De Lellis C., Some remarks on the theory of elasticity for compressible Neohookean materials, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (5) (2003) 521-549. | Numdam | MR | Zbl

[10] Coron J.-M., Gulliver R.D., Minimizing p-harmonic maps into spheres, J. Reine Angew. Math. 401 (1989) 82-100. | EuDML | MR | Zbl

[11] Gent A.N., Lindley P.B., Internal rupture of bonded rubber cylinders in tension, Proc. R. Soc. Lond. A 249 (1958) 195-205.

[12] Hardt R.M., Singularities of harmonic maps, Bull. Amer. Math. Soc. 34 (1997) 15-34. | MR | Zbl

[13] Hardt R., Lin F.H., Wang C.Y., The p-energy minimality of x/x, Comm. Anal. Geom. 6 (1998) 141-152. | MR | Zbl

[14] Hill R.J., The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950. | MR | Zbl

[15] Hong M.-C., On the minimality of the p-harmonic map x x:B n S n-1 , Calc. Var. Partial Differential Equations 13 (2001) 459-468. | MR | Zbl

[16] Horgan C.O., Polignone D.A., Cavitation in nonlinearly elastic solids: A review, Appl. Mech. Rev. 48 (1995) 471-485.

[17] Jäger W., Kaul H., Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math. 343 (1983) 146-161. | EuDML | MR | Zbl

[18] James R.D., Spector S.J., The formation of filamentary voids in solids, J. Mech. Phys. Solids 39 (1991) 783-813. | MR | Zbl

[19] James R.D., Spector S.J., Remarks on W 1,p -quasiconvexity, interpenetration of matter and function spaces for elasticity, Anal. Non Linéaire 9 (1992) 263-280. | EuDML | Numdam | MR | Zbl

[20] Lin F.H., A remark on the map x/x, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 529-531. | MR | Zbl

[21] Meyers N.G., Quasi-convexity and lower semi-continuity of multiple variational integrals of any order, Trans. Amer. Math. Soc. 119 (1965) 125-149. | MR | Zbl

[22] Meynard F., Existence and nonexistence results on the radially symmetric cavitation problem, Quart. Appl. Math. 50 (1992) 201-226. | MR | Zbl

[23] Morrey C.B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952) 25-53. | MR | Zbl

[24] Morrey C.B., Multiple Integrals in the Calculus of Variations, Springer, 1966. | MR | Zbl

[25] Müller S., Spector S.J., An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal. 131 (1995) 1-66. | MR | Zbl

[26] Šilhavý M., The Mechanics and Thermodynamics of Continuous Media, Springer, 1997. | MR | Zbl

[27] Sivaloganathan J., Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity, Arch. Rational Mech. Anal. 96 (1986) 97-136. | MR | Zbl

[28] Sivaloganathan J., Spector S.J., On the existence of minimizers with prescribed singular points in nonlinear elasticity, J. Elasticity 59 (2000) 83-113. | MR | Zbl

[29] Stuart C.A., Radially symmetric cavitation for hyperelastic materials, Anal. Non Linéaire 2 (1985) 33-66. | EuDML | Numdam | MR | Zbl

Cited by Sources: