@article{AIHPC_2008__25_1_201_0, author = {Sivaloganathan, Jeyabal and Spector, Scott J.}, title = {Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {201--213}, publisher = {Elsevier}, volume = {25}, number = {1}, year = {2008}, doi = {10.1016/j.anihpc.2006.11.013}, mrnumber = {2383087}, zbl = {1137.74011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.013/} }
TY - JOUR AU - Sivaloganathan, Jeyabal AU - Spector, Scott J. TI - Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 201 EP - 213 VL - 25 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.013/ DO - 10.1016/j.anihpc.2006.11.013 LA - en ID - AIHPC_2008__25_1_201_0 ER -
%0 Journal Article %A Sivaloganathan, Jeyabal %A Spector, Scott J. %T Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 201-213 %V 25 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.013/ %R 10.1016/j.anihpc.2006.11.013 %G en %F AIHPC_2008__25_1_201_0
Sivaloganathan, Jeyabal; Spector, Scott J. Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity. Annales de l'I.H.P. Analyse non linéaire, Volume 25 (2008) no. 1, pp. 201-213. doi : 10.1016/j.anihpc.2006.11.013. http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.013/
[1] Co-area, liquid crystals, and minimal surfaces, in: Partial Differential Equations, Tianjin, 1986, Lecture Notes in Math., vol. 1306, Springer, 1988, pp. 1-22. | MR | Zbl
, , ,[2] Fonctions quasi affines et minimisation de , C. R. Acad. Sci. Paris Sér. I Math. 306 (1988) 355-358. | MR
, ,[3] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977) 337-403. | MR | Zbl
,[4] Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. A 306 (1982) 557-611. | MR | Zbl
,[5] Quasiconvexity at the boundary, positivity of the second variation and elastic stability, Arch. Rational Mech. Anal. 86 (1984) 251-277. | MR | Zbl
, ,[6] -quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984) 225-253. | MR | Zbl
, ,[7] The theory of indentation and hardness tests, Proc. Phys. Soc. 57 (1945) 147-159.
, , ,[8] Harmonic maps with defects, Comm. Math. Phys. 107 (1986) 649-705. | MR | Zbl
, , ,[9] Some remarks on the theory of elasticity for compressible Neohookean materials, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (5) (2003) 521-549. | Numdam | MR | Zbl
, ,[10] Minimizing p-harmonic maps into spheres, J. Reine Angew. Math. 401 (1989) 82-100. | EuDML | MR | Zbl
, ,[11] Internal rupture of bonded rubber cylinders in tension, Proc. R. Soc. Lond. A 249 (1958) 195-205.
, ,[12] Singularities of harmonic maps, Bull. Amer. Math. Soc. 34 (1997) 15-34. | MR | Zbl
,[13] The p-energy minimality of , Comm. Anal. Geom. 6 (1998) 141-152. | MR | Zbl
, , ,[14] The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950. | MR | Zbl
,[15] On the minimality of the p-harmonic map , Calc. Var. Partial Differential Equations 13 (2001) 459-468. | MR | Zbl
,[16] Cavitation in nonlinearly elastic solids: A review, Appl. Mech. Rev. 48 (1995) 471-485.
, ,[17] Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math. 343 (1983) 146-161. | EuDML | MR | Zbl
, ,[18] The formation of filamentary voids in solids, J. Mech. Phys. Solids 39 (1991) 783-813. | MR | Zbl
, ,[19] Remarks on -quasiconvexity, interpenetration of matter and function spaces for elasticity, Anal. Non Linéaire 9 (1992) 263-280. | EuDML | Numdam | MR | Zbl
, ,[20] A remark on the map , C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 529-531. | MR | Zbl
,[21] Quasi-convexity and lower semi-continuity of multiple variational integrals of any order, Trans. Amer. Math. Soc. 119 (1965) 125-149. | MR | Zbl
,[22] Existence and nonexistence results on the radially symmetric cavitation problem, Quart. Appl. Math. 50 (1992) 201-226. | MR | Zbl
,[23] Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952) 25-53. | MR | Zbl
,[24] Multiple Integrals in the Calculus of Variations, Springer, 1966. | MR | Zbl
,[25] An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal. 131 (1995) 1-66. | MR | Zbl
, ,[26] The Mechanics and Thermodynamics of Continuous Media, Springer, 1997. | MR | Zbl
,[27] Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity, Arch. Rational Mech. Anal. 96 (1986) 97-136. | MR | Zbl
,[28] On the existence of minimizers with prescribed singular points in nonlinear elasticity, J. Elasticity 59 (2000) 83-113. | MR | Zbl
, ,[29] Radially symmetric cavitation for hyperelastic materials, Anal. Non Linéaire 2 (1985) 33-66. | EuDML | Numdam | MR | Zbl
,Cited by Sources: