@article{AIHPC_2008__25_1_43_0, author = {Schmidt, Bernd}, title = {Qualitative properties of a continuum theory for thin films}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {43--75}, publisher = {Elsevier}, volume = {25}, number = {1}, year = {2008}, doi = {10.1016/j.anihpc.2006.09.001}, mrnumber = {2383078}, zbl = {1142.74026}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.09.001/} }
TY - JOUR AU - Schmidt, Bernd TI - Qualitative properties of a continuum theory for thin films JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 43 EP - 75 VL - 25 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.09.001/ DO - 10.1016/j.anihpc.2006.09.001 LA - en ID - AIHPC_2008__25_1_43_0 ER -
%0 Journal Article %A Schmidt, Bernd %T Qualitative properties of a continuum theory for thin films %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 43-75 %V 25 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.09.001/ %R 10.1016/j.anihpc.2006.09.001 %G en %F AIHPC_2008__25_1_43_0
Schmidt, Bernd. Qualitative properties of a continuum theory for thin films. Annales de l'I.H.P. Analyse non linéaire, Volume 25 (2008) no. 1, pp. 43-75. doi : 10.1016/j.anihpc.2006.09.001. http://www.numdam.org/articles/10.1016/j.anihpc.2006.09.001/
[1] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977) 337-403. | MR | Zbl
,[2] Convergence de modèles moléculaires vers des modèles de mécanique des milieux continus, C. R. Acad. Sci. Paris, Ser. I 332 (2001) 949-956. | MR | Zbl
, , ,[3] From molecular models to continuum mechanics, Arch. Rational Mech. Anal. 164 (2002) 341-381. | MR | Zbl
, , ,[4] Nonlocal variational limits of discrete systems, Commun. Contemp. Math. 2 (2000) 285-297. | MR | Zbl
,[5] Limits of discrete systems with long-range interactions, J. Convex Anal. 9 (2002) 363-399. | MR | Zbl
, ,[6] Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids 7 (2002) 41-66. | MR | Zbl
, ,[7] Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988. | MR | Zbl
,[8] Mathematical Elasticity. Vol. II: Theory of Plates, North-Holland, Amsterdam, 1997. | MR | Zbl
,[9] Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989. | MR | Zbl
,[10] An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993. | MR | Zbl
,[11] Variational Methods for Crystalline Microstructure - Analysis and Computation, Springer-Verlag, Berlin, 2003. | MR | Zbl
,[12] A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J. Mech. Phys. Solids 48 (2000) 1519-1540. | MR | Zbl
, ,[13] Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 173-178. | MR | Zbl
, , ,[14] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002) 1461-1506. | MR | Zbl
, , ,[15] A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Rational Mech. Anal. 180 (2006) 183-236. | MR | Zbl
, , ,[16] Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Acad. Sci. Paris, Ser. I 336 (2003) 697-702. | MR | Zbl
, , , ,[17] La modèle membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle, C. R. Acad. Sci. Paris, Ser. I 317 (1993) 221-226. | MR | Zbl
, ,[18] The nonlinear membrane model as a variational limit of three-dimensional elasticity, J. Math. Pures Appl. 74 (1995) 549-578. | MR | Zbl
, ,[19] The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci. 6 (1996) 59-84. | MR | Zbl
, ,[20] A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1927. | JFM
,[21] B. Schmidt, On the passage from atomic to continuum theory for thin films, preprint 82/2005, Max-Planck Institut für Mathematik in den Naturwissenschaften, Leipzig. | MR | Zbl
[22] B. Schmidt, Effective theories for thin elastic films, PhD thesis, Universität Leipzig, 2006. | Zbl
[23] Statistical Mechanics of Elasticity, J. Wiley & Sons, New York, 1983. | Zbl
,Cited by Sources: