@article{AIHPC_2006__23_3_363_0, author = {Tr\'elat, Emmanuel}, title = {Global subanalytic solutions of {Hamilton-Jacobi} type equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {363--387}, publisher = {Elsevier}, volume = {23}, number = {3}, year = {2006}, doi = {10.1016/j.anihpc.2005.05.002}, zbl = {1094.35020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.002/} }
TY - JOUR AU - Trélat, Emmanuel TI - Global subanalytic solutions of Hamilton-Jacobi type equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 363 EP - 387 VL - 23 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.002/ DO - 10.1016/j.anihpc.2005.05.002 LA - en ID - AIHPC_2006__23_3_363_0 ER -
%0 Journal Article %A Trélat, Emmanuel %T Global subanalytic solutions of Hamilton-Jacobi type equations %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 363-387 %V 23 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.002/ %R 10.1016/j.anihpc.2005.05.002 %G en %F AIHPC_2006__23_3_363_0
Trélat, Emmanuel. Global subanalytic solutions of Hamilton-Jacobi type equations. Annales de l'I.H.P. Analyse non linéaire, Volume 23 (2006) no. 3, pp. 363-387. doi : 10.1016/j.anihpc.2005.05.002. http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.002/
[1] Compactness for sub-Riemannian length minimizers and subanalyticity, Rend. Sem. Mat. Torino 56 (1999). | MR | Zbl
,[2] Sub-Riemannian sphere in the Martinet flat case, ESAIM Control Optim. Calc. Var. 2 (1997) 377-448. | Numdam | MR | Zbl
, , , ,[3] On subanalyticity of Carnot-Carathéodory distances, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 3. | Numdam | MR | Zbl
, ,[4] Sub-Riemannian metrics: minimality of singular geodesics versus subanalyticity, ESAIM Control Optim. Calc. Var. 4 (1999) 377-403. | Numdam | MR | Zbl
, ,[5] Structural properties of singularities of semiconcave functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (4) (1999) 719-740. | Numdam | MR | Zbl
, ,[6] On the singularities of convex functions, Manuscripta Math. 76 (3-4) (1992) 421-435. | MR | Zbl
, , ,[7] F. Alouges, S. Labbé. Z-invariant micromagnetic configurations, Preprint Univ. Paris Sud, Orsay, 2005.
[8] On the propagation of singularities of semi-convex functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (4) (1993) 597-616. | Numdam | MR | Zbl
, , ,[9] Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, Boston, 1997. | MR | Zbl
, ,[10] Solutions de viscosité des équations de Hamilton-Jacobi, Math. Appl., vol. 17, Springer-Verlag, 1994. | MR | Zbl
,[11] Tangent space in sub-Riemannian geometry, in: Sub-Riemannian Geometry, Birkhäuser, 1996. | MR | Zbl
,[12] Singular trajectories and their role in control theory, Math. Appl. 40 (2003). | MR | Zbl
, ,[13] On the role of singular minimizers in sub-Riemannian geometry, Ann. Fac. Sci. Toulouse (6) X (3) (2001) 405-491. | Numdam | MR | Zbl
, ,[14] Regularity results for solutions of a class of Hamilton-Jacobi equations, Arch. Rational Mech. Anal. 40 (1997) 197-223. | MR | Zbl
, , ,[15] Convexity properties of the minimum time function, Calc. Var. Partial Differential Equations 3 (1995) 273-298. | MR | Zbl
, ,[16] Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progr. Nonlinear Differential Equations Appl., vol. 58, Birkhäuser, Boston, 2004. | MR | Zbl
, ,[17] On the singularities of the viscosity solutions to Hamilton-Jacobi-Bellman equations, Indiana Univ. Math. J. 36 (3) (1987) 501-524. | MR | Zbl
, ,[18] Propriétés génériques des trajectoires singulières, C. R. Acad. Sci. Paris, Ser. I 337 (1) (2003) 49-52. | MR | Zbl
, , ,[19] Y. Chitour, F. Jean, E. Trélat. Genericity properties for singular trajectories, J. Differential Geom. (2005), in press.
[20] Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983) 1-42. | MR | Zbl
, ,[21] Partial Differential Equations, Amer. Math. Soc., 1998.
,[22] Weak KAM Theorem and Lagrangian Dynamics, Cambridge University Press, 2003.
,[23] Stratification of real analytic mappings and images, Invent. Math. 28 (1975). | MR | Zbl
,[24] Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative Algebra. In honor of Y. Akizuki, Tokyo, 1973. | MR | Zbl
,[25] On representation of solutions of Hamilton-Jacobi equations with convex Hamiltonians, in: Lecture Notes Numer. Appl. Anal., vol. 8, 1985, pp. 15-22. | MR
,[26] Geometric Control Theory, Cambridge University Press, 1997. | MR | Zbl
,[27] Generalized Solutions of Hamilton-Jacobi Equations, Pitman, 1982. | MR | Zbl
,[28] The Mathematical Theory of Optimal Processes, Interscience Publishers, John Wiley & Sons, New York, 1962. | MR
, , , ,[29] F. Rampazzo, Faithful representations for convex Hamilton-Jacobi equations, Preprint, Univ. di Padova. | MR
[30] Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim. 41 (3) (2002) 659-681. | MR | Zbl
,[31] Singularities of viscosity solutions and the stabilization problem in the plane, Indiana Univ. Math. J. 52 (5) (2003) 1373-1396. | MR | Zbl
,[32] Subanalytic sets in the calculus of variations, Acta Math. 146 (1981). | MR | Zbl
,[33] Some properties of the value function and its level sets for affine control systems with quadratic cost, J. Dynam. Control Systems 6 (4) (2000) 511-541. | MR | Zbl
,[34] E. Trélat, Etude asymptotique et transcendance de la fonction valeur en contrôle optimal; catégorie log-exp en géométrie sous-Riemannienne dans le cas Martinet, Thèse, Univ. de Bourgogne, 2000.
[35] Solutions sous-analytiques globales de certaines équations d'Hamilton-Jacobi, C. R. Acad. Sci. Paris, Ser. I 337 (10) (2003) 653-656. | MR | Zbl
,[36] Geometric categories and o-minimal structures, Duke Math. J. 84 (2) (1996). | MR | Zbl
, ,Cited by Sources: