@article{AIHPC_2006__23_2_135_0, author = {Millot, Vincent}, title = {The relaxed energy for ${S}^{2}$-valued maps and measurable weights}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {135--157}, publisher = {Elsevier}, volume = {23}, number = {2}, year = {2006}, doi = {10.1016/j.anihpc.2005.02.003}, zbl = {05024482}, mrnumber = {2201149}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2005.02.003/} }
TY - JOUR AU - Millot, Vincent TI - The relaxed energy for ${S}^{2}$-valued maps and measurable weights JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 DA - 2006/// SP - 135 EP - 157 VL - 23 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2005.02.003/ UR - https://zbmath.org/?q=an%3A05024482 UR - https://www.ams.org/mathscinet-getitem?mr=2201149 UR - https://doi.org/10.1016/j.anihpc.2005.02.003 DO - 10.1016/j.anihpc.2005.02.003 LA - en ID - AIHPC_2006__23_2_135_0 ER -
Millot, Vincent. The relaxed energy for ${S}^{2}$-valued maps and measurable weights. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 2, pp. 135-157. doi : 10.1016/j.anihpc.2005.02.003. http://www.numdam.org/articles/10.1016/j.anihpc.2005.02.003/
[1] A characterization of maps in which can be approximated by smooth maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990) 269-286. | Numdam | MR 1067776 | Zbl 0708.58004
,[2] The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991) 153-206. | MR 1120602 | Zbl 0756.46017
,[3] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988) 60-75. | MR 960223 | Zbl 0657.46027
, ,[4] Relaxed energies for harmonic maps, in: , , (Eds.), Variational Problems, Birkhäuser, 1990, pp. 37-52. | MR 1205144 | Zbl 0793.58011
, , ,[5] J. Bourgain, H. Brezis, P. Mironescu, -maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation, Publ. Math. Inst. Hautes Etudes Sci., in press. | Numdam | MR 2075883 | Zbl 1051.49030
[6] H. Brezis, Liquid crystals and energy estimates for -valued maps, in [11].
[7] Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983) 203-215. | MR 728866 | Zbl 0532.58006
, ,[8] Harmonics maps with defects, Comm. Math. Phys. 107 (1986) 649-705. | MR 868739 | Zbl 0608.58016
, , ,[9] H. Brezis, P.M. Mironescu, A.C. Ponce, -maps with values into , in: S. Chanillo, P. Cordaro, N. Hanges, J. Hounie, A. Meziani (Eds.), Geometric Analysis of PDE Several Complex Variables, Contemp. Math., AMS, in press. | MR 2127792 | Zbl 1078.46020
[10] Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser, 1993. | Zbl 0816.49001
,[11] Theory and Applications of Liquid Crystals, IMA Ser., vol. 5, Springer, 1987. | MR 900827 | Zbl 0713.76006
, (Eds.),[12] Cartesian Currents in the Calculus of Variations, Springer, 1998. | MR 1645086 | Zbl 0914.49001
, , ,[13] V. Millot, Energy with weight for -valued maps with prescribed singularities, Calculus of Variations and PDEs, in press. | Zbl 02204799
Cité par Sources :