Françoise Dal’Bo & Inkang Kim

Shadow lemma on the product of Hadamard manifolds and applications

<http://tsg.cedram.org/item?id=TSG_2006-2007__25__105_0>
SHADOW LEMMA ON THE PRODUCT OF HADAMARD MANIFOLDS AND APPLICATIONS

Françoise Dal’Bo & Inkang Kim

Abstract. — In this paper we analyze the limit set of nonelementary subgroups acting by isometries on the product of two pinched Hadamard manifolds. Following M. Burger’s and P. Albuquerque’s works, we study the properties of Patterson-Sullivan’s measures on the limit sets of graph groups associated to convex cocompact groups.

Introduction

Let $X_1, X_2$ be two pinched Hadamard manifolds. In this paper we are interested in the Riemannian product $Y = X_1 \times X_2$. The geometric boundary of $Y$, denoted $\partial Y$, is identified with $\partial X_1 \times \partial X_2 \times ]0, \infty[ \cup \partial X_1 \cup \partial X_2$. Consider a subgroup $\Gamma \subset I(Y)$, denote $L(\Gamma)$ its limit set, $L_{\text{reg}}(\Gamma) = L(\Gamma) \cap \partial X_1 \times \partial X_2 \times ]0, \infty[ \cup \partial X_1 \cup \partial X_2$. Following the path of Y. Benoist, M. Burger and Y. Guivarc’h ([2], [4], [11]), one proves, in the section 2, the following results. (see also [17]) :

Proposition 2.3. — Let $\Gamma$ be a subgroup (not necessary discrete) of $I(Y)$ such that the projections of $\Gamma$ into $I(X_1)$ and $I(X_2)$ are strongly nonelementary. If $L_{\text{reg}}(\Gamma) \neq \phi$ then $F(\Gamma)$ is a minimal closed non empty $\Gamma$- invariant subset of $\partial X_1 \times \partial X_2$ and $L_{\text{reg}}(\Gamma) = F(\Gamma) \times P(\Gamma)$ where $P(\Gamma) \subset ]0, \infty[.$

Proposition 2.4. — Let $\Gamma$ be a subgroup of $I^+(X_1) \times I^+(X_2)$ such that the projections of $\Gamma$ into $I^+(X_1)$ and $I^+(X_2)$ are strongly nonelementary

Acknowledgements: The first author thanks the CNRS for its support during her stay in Seoul and Seoul National University for its warm welcome. The second author gratefully acknowledges the partial support of grant (KRF-2005-015-C00048).
and do not contain elliptic isometries then $L_{\text{reg}}(\Gamma) \neq \phi$,

$$P(\Gamma) = \left\{ \frac{\ell(\gamma_1)}{\ell(\gamma_2)} / (\gamma_1, \gamma_2) \in \Gamma \text{ and is hyperbolic} \right\} \cap ]0, \infty[ $$

and $P(\Gamma)$ is an interval.

Let $\Gamma_1, \Gamma_2$ be two isomorphic subgroups of $I(X_1)$ and $I(X_2)$ . Consider an isomorphism $\rho$ between $\Gamma_1$ and $\Gamma_2$, and denote $\Gamma_{\rho}$ the graph group

\[ \Gamma_{\rho} = \{ (\gamma_1, \rho(\gamma_1)) / \gamma_1 \in \Gamma_1 \} \]

Proposition 2.8. — Let $\Gamma$ be a subgroup of $I^+(X_1) \times I^+(X_2)$ acting freely on $Y$. If $L(\Gamma) = L_{\text{reg}}(\Gamma)$ then $\Gamma$ is a graph group $\Gamma_{\rho}$ and $\rho$ preserves the type of isometries.

In the section 3, one considers only infinite discrete subgroups of $I(Y)$. One says that a measure $\mu$ on $\partial Y$ is a $(\beta, p)$-conformal measure, for $\beta \geq 0$ and $p \in [0, \infty]$, if the support of $\mu$ is included in $\partial X_1 \times \partial X_2 \times \{p\}$ if $p \in ]0, \infty[$ in $\partial X_1$ if $p = \infty$ and in $\partial X_2$ if $p = 0$ and if, for any Borel subset $B \subset \partial Y$, one has:

\[ \forall \gamma \in \Gamma, \mu(\gamma(B)) = \int_B |\gamma'(\xi)|^\beta d\mu(\xi) \]

(see section 3 for definition of $|\gamma'(\xi)|$).

Adapting the works of M. Burger [4] and P. Albuquerque [1], one proves the following results.

Theorem 3.2 (Shadow Lemma). — Let $\Gamma$ be an infinite discrete subgroup of $I(Y)$. Suppose that $L(\Gamma)$ is not included in a small cell defined by $\{\xi_1\} \times \partial X_2 \times [0, \infty] \cup \partial X_1 \times \{\xi_2\} \times [0, \infty]$. If $\mu$ is a $(\beta, p)$-conformal measure then there exists $d_0 > 0$ such that for every $r \geq d_0$, there exists $c(r) \geq 1$ such that

$$\frac{1}{c(r)} e^{-\beta d(0, \pi^p(\gamma(0)))} \leq \mu(S(0, B(\gamma(0), r))) \leq c(r)e^{-\beta d(0, \pi^p(\gamma(0)))}$$

for every $\gamma \in \Gamma$

(see section 3 for the definitions).

Using this theorem, one generalizes a result due to M. Burger [4], P. Albuquerque [1] and J-F Quint [19] in the case where $X_1$ and $X_2$ are symmetric spaces of Rank 1.

Corollary 3.4 and 3.5. — Let $\Gamma_{\rho}$ be a graph group associated to isomorphic nonelementary convex cocompact subgroups $\Gamma_1, \Gamma_2$ of $I^+(X_1)$
and $I^+(X_2)$, without elliptic elements. If $\sigma$ is a Patterson-Sullivan measure associated to $\Gamma_\rho$ then there exists an unique $\lambda \in P(\Gamma_\rho)$ such that the support of $\sigma$ is $F(\Gamma_\rho) \times \lambda$.

Using Patterson-Sullivan’s measures, we construct measures on $\Gamma \backslash T^1X_1 \times T^1X_2$ invariant by the Weyl chamber flow.

Acknowledgements. — The authors deeply thank the members of Institut Fourier, Seoul National University, and Institut Mathematique de Rennes, where the part of this work was carried out.

1. Preliminaries on pinched Hadamard manifolds

The goal of this section is to recall well known notions and results which will be used in the next sections. Let $X$ be a simply connected, negatively curved Riemannian manifold. Such a manifold is called a Hadamard manifold. Let $K$ be the sectionnal curvature of $X$. One supposes that there exist $a > 0$ and $b > 0$ such that $-b^2 \leq K \leq -a^2$. In this case, $X$ is called a pinched Hadamard manifold. In this paper one always normalizes $K$ by sup $K = -1$. Denote $\partial X$ the geometric boundary of $X$ and $I(X)$ the group of isometries. The action of $I(X)$ on $X$ induces an action on $\partial X$ by homeomorphism. Let $I^+(X)$ be the subgroup of orientation preserving isometries ; $g \in I^+(X)$ is elliptic if it fixes at least one point in $X$. If $g$ is not elliptic then $g$ fixes exactly 1 or 2 points in $\partial X$. In the first case $g$ is parabolic, in the second one, $g$ is hyperbolic. In both cases, $(g^n(x))_{n \geq 1}$ and $(g^{-n}(x))_{n \geq 1}$ converge, the limits do not depend on $x \in X$ and belong to $\partial X$. Set $g^+ = \lim_{n \to +\infty} g^n(x)$ and $g^- = \lim_{n \to +\infty} g^{-n}(x)$. The isometry $g$ is parabolic if and only if $g^+ = g^-$. Define the length of $g \in I(X)$ by $\ell(g) = \inf_{x \in X} d(x, g(x))$. If $g$ is hyperbolic $\ell(g) = d(z, g(z))$ for any $z$ in the geodesic $(g^-g^+)$, if $g$ is parabolic or elliptic $\ell(g) = 0$.

Lemma 1.1 ([9]). — Fix $0 \in X$. Let $g \in I^+(X)$.

1. If $g$ is hyperbolic, there exists $K_1 > 0$ such that :

$\forall n \in \mathbb{Z}, |n|\ell(g) \leq d(0, g^n(0)) \leq K_1 + |n|\ell(g)$

2. If $g$ is parabolic, there exists $K_2 > 0$ such that :

$\forall n \in \mathbb{Z}, d(0, g^n(0)) \leq K_2 \log(|n| + 1)$. 

VOLUME 25 (2006–2007)
The first inequality is obvious, the second one is proved in [9] and uses the fact that the curvature is pinched (see also [12]).

Take \( \xi \in \partial X \) and \( x, y \in X \). Consider a geodesic \( r(t) \) with extremity \( \xi \). The limit of \( d(x, r(t)) - d(y, r(t)) \) when \( t \to +\infty \), exists, and it does not depend on the origin of \( r \) and is denoted by \( B_\xi(x, y) \). Fix an origin \( 0 \in X \) and consider the map \( D : \partial X \times \partial X \to \mathbb{R}^+ \) defined by \( D(\xi, \eta) = 0 \) and, for \( \xi \neq \eta \), by \( D(\xi, \eta) = e^{-1/2(B_\xi(0, z) + B_\eta(0, z))} \) where \( z \) is any point in \( (\xi, \eta) \). For \( g \in I(X) \), set \( |g'(\xi)| = e^{B_\xi(0, g^{-1}(0))} \). If \( g \) is hyperbolic or parabolic, remark that \( |g'(g^\pm)| = e^{\mp \ell(g)} \).

**Theorem 1.2** ([3]). — The map \( D \) is a distance (called Gromov-Bourdon distance) on \( \partial X \) satisfying:

1. There exist \( C \geq 1 \) and \( t > 1 \) such that for any \( \xi, \eta \in \partial X \)
   \[
   \frac{1}{C} t^{-d(0, (\xi \eta))} \leq D(\xi, \eta) \leq Ct^{-d(0, (\xi \eta))}
   \]
2. For any \( g \in I(X) \) and \( \xi, \eta \in \partial X \):
   \[
   D(g(\xi), g(\eta)) = |g'(\xi)|^{1/2} |g'(\eta)|^{1/2} D(\xi, \eta).
   \]

Let us prove now two lemmas which will be used in the next section.

**Lemma 1.3.** — Let \((g_n)_{n \geq 1}\) be a sequence of \( I(X) \). Suppose that

\[
(g_n(0))_{n \geq 1} \quad \text{and} \quad (g_n^{-1}(0))_{n \geq 1}
\]

converge respectively to \( \xi \in \partial X \) and \( \xi' \in \partial X \). Then for any \( x \in XU \partial X - \{\xi', \xi\} \), one has \( \lim_{n \to +\infty} g_n(x) = \xi \). Moreover if \( g_n \) are hyperbolic or parabolic then \( \lim_{n \to +\infty} g_n^+ = \xi \) and \( \lim_{n \to +\infty} g_n^- = \xi' \).

**Proof.** — Since \( d(g_n(0), g_n(x)) = d(0, x) \) for any \( x \in X \), \( \lim_{n \to +\infty} g_n(x) = \xi \).

Let \( \eta, \eta' \) in \( \partial X - \{\xi', \xi\} \), using the theorem 1.2 (1), one obtains

\[
\lim_{n \to +\infty} D(g_n(\eta), g_n(\eta')) = 0.
\]

Take \( x \in (\eta \eta') \), since \( \lim_{n \to +\infty} g_n(x) = \xi \) then \( \lim_{n \to +\infty} g_n(\eta) = \xi \). Suppose now that \( g_n \) is hyperbolic or parabolic, then, according to the theorem 1.2 (2), one has:

\[
D(g_n(\eta), g_n^+) = |g'_n(\eta)|^{1/2} e^{-1/2\ell(g_n)} D(\eta, g_n^+)
\]

and hence \( D(g_n(\eta), g_n^+) \leq |g'_n(\eta)|^{1/2} \). Since \( \eta \neq \xi' \), \( \lim_{n \to +\infty} B_\eta(0, g_n^{-1}(0)) = -\infty \) and hence \( \lim_{n \to +\infty} g_n^+ = \lim_{n \to +\infty} g_n(\eta) = \xi \). The same argument holds for \( g_n^- \).

\( \square \)
LEMMA 1.4 ([6]). — Let $g$ and $h$ be hyperbolic isometries

1. If $\{g^+, g^-\} \cap \{h^+, h^-\} = \emptyset$ then there exist $N > 0$ and $d > 0$ such that for any $n, m \in \mathbb{Z}$:

$$\|\ell(g^N h^m) - n|\ell(g^N) - m|\ell(h^N)| \leq d$$

2. If $g^+ = h^+$ then for any $n, m \in \mathbb{Z}^*$:

$$\ell(g^n h^m) = |n\ell(g) + m\ell(h)|.$$

Proof. —

1. It is proved in [6] (Lemma 4.1).

2. One has $g^n h^m (g^+) = g^+$ and $|(g^n h^m)'(g^+)| = e^{-n\ell(g) - m\ell(h)}$, hence $gh$ is hyperbolic and $\ell(g^n h^m) = n\ell(g) + m\ell(h)$.

$\square$

2. Limit sets of groups acting on $X_1 \times X_2$

The results proved in this section are inspired by [2], [4] and [5].

For $i = 1, 2$, let $X_i$ be a pinched Hadamard manifold. Denote $Y = X_1 \times X_2$ the Riemannian product of $X_1$ and $X_2$. Fix an origine $0 = (0_1, 0_2) \in Y$.

Let $\varphi$ be the bijection from the unitary tangent bundle, $T^1_0 Y$, of $Y$ at $0$, into $T^1_{0_1} X_1 \times T^1_{0_2} X_2 \times \{0\} \times \mathbb{R}_{\geq 0}$ defined by

$$\varphi(U_1, U_2) = \left( \frac{U_1}{\|U_1\|}, \frac{U_2}{\|U_2\|}, \|U_1\| \right) \text{ if } \|U_1\| \|U_2\| \neq 0$$

and by $\varphi(U_1, U_2) = U_i$ if $\|U_i\| = 1$. The map $\varphi$ induces a one-to-one correspondence between the geometric boundary, $\partial Y$, of $Y$ and $\partial X_1 \times \partial X_2 \times \{0\} \times \mathbb{R}_{\geq 0}$. The regular (resp. singular) boundary of $Y$, denoted $\partial Y_{\text{reg}}$ (resp. $\partial Y_{\text{sing}}$) is identified with $\partial X_1 \times \partial X_2 \times \{0\}$. An element $g \in I(X_1) \times I(X_2)$ is called hyperbolic if $g_1$ and $g_2$ are hyperbolic. The following lemma is a consequence of the lemma 1.1.
Lemma 2.1. — Let \( g = (g_1, g_2) \in I(X_1) \times I(X_2) \).

If \( g \) is hyperbolic then \( \lim_{n \to +\infty} g_n(0) = \left( g_1^+, g_2^+, \frac{\ell(g_1)}{\ell(g_2)} \right) \).

If \( g_i \) is hyperbolic and the other factor is parabolic then
\[
\lim_{n \to +\infty} g_n(0) = g_i^+ \in \partial Y_{\text{sing}}.
\]

If \( \Gamma \) is a subgroup of \( I(X_1) \times I(X_2) \) denote, for \( i = 1, 2, \Gamma_i \) the projection of \( \Gamma \) into \( I(X_i) \). One says that \( \Gamma_i \) is strongly nonelementary if \( \Gamma_i \) is nonelementary (i.e \( L(\Gamma_i) \) is infinite) and if \( \Gamma_i \) has no global fixed point in \( L(\Gamma_i) \).

Lemma 2.2. — Let \( \Gamma \) be a subgroup of \( I(X_1) \times I(X_2) \) such that \( \Gamma_1 \) and \( \Gamma_2 \) are strongly nonelementary. Take \( \xi = (\xi_1, \xi_2) \in L(\Gamma_1) \times L(\Gamma_2) \), for any \( (\eta_1, \eta_2) \in L(\Gamma_1) \times L(\Gamma_2) \) there exists \( \gamma = (\gamma_1, \gamma_2) \in \Gamma \) such that \( \gamma_i(\xi_i) \neq \eta_i \) for \( i = 1, 2 \).

Proof. — Suppose \( \xi_1 = \eta_1 \) and \( \xi_2 \neq \eta_2 \). Since \( \Gamma_1 \) and \( \Gamma_2 \) are strongly nonelementary there exist \( \gamma = (\gamma_1, \gamma_2) \) and \( \gamma' = (\gamma'_1, \gamma'_2) \) in \( \Gamma \) such that \( \gamma_1(\xi_1) \neq \xi_1, \gamma'_2(\xi_2) \neq \xi_2 \) and \( \gamma'_2(\xi_2) \neq \eta_2 \). If \( \gamma_2(\xi_2) \neq \eta_2 \) or \( \gamma'_1(\xi_1) \neq \xi_1 \) then \( \gamma \) or \( \gamma' \) is the one that we searched for, otherwise \( \gamma \gamma' \) satisfies the required property. Suppose now \( \xi_1 = \eta_1 \) and \( \xi_2 = \eta_2 \), consider \( \gamma = (\gamma_1, \gamma_2) \in \Gamma \) such that \( \gamma_1(\xi_1) \neq \xi_1 \). If \( \gamma_2(\xi_2) \neq \xi_2 \) the lemma is proved, otherwise we are in the previous situation. \( \square \)

Let \( g = (g_1, g_2) \in I(X_1) \times I(X_2) \) and \( \xi \in \partial Y \). The action of \( I(X_1) \times I(X_2) \) on \( \partial Y \) is given by \( g(\xi) = (g_1(\xi_1), g_2(\xi_2), p) \) if \( \xi = (\xi_1, \xi_2, p) \in \partial Y_{\text{reg}} \) and by \( g(\xi) = g_i(\xi_i) \) if \( \xi = \xi_i \in \partial Y_{\text{sing}} \). Consider a subgroup \( \Gamma \subset I(X_1) \times I(X_2) \), in general its limit set, \( L(\Gamma) = \overline{\Gamma(0)} \cap \partial Y \), is not minimal. Set \( L_{\text{reg}}(\Gamma) = L(\Gamma) \cap \partial Y_{\text{reg}} \), if \( L_{\text{reg}}(\Gamma) \neq \phi \) denote \( F(\Gamma) \) the projection of \( L_{\text{reg}}(\Gamma) \) into \( \partial X_1 \times \partial X_2 \) and \( P(\Gamma) \) its projection into \( \partial Y \). The following propositions are already proved in the case where \( X_1 \) and \( X_2 \) are symmetric spaces [2], [4], [11] or if \( \Gamma \) is a graph group associated to Schottky groups [4], [5]).

Proposition 2.3. — Let \( \Gamma \) be a subgroup of \( I(X_1) \times I(X_2) \) such that \( \Gamma_1 \) and \( \Gamma_2 \) are strongly nonelementary. If \( L_{\text{reg}}(\Gamma) \neq \phi \) then \( F(\Gamma) \) is a minimal closed invariant subset of \( \partial X_1 \times \partial X_2 \) and \( L_{\text{reg}}(\Gamma) = F(\Gamma) \times P(\Gamma) \).

Proof. — Consider \( \xi = (\xi_1, \xi_2) \) and \( \eta = (\eta_1, \eta_2) \) in \( F(\Gamma) \) and let us prove that \( \xi \in \overline{\Gamma \eta} \subset F(\Gamma) \). Let \( \gamma_n = (\gamma_{n_1}, \gamma_{n_2}) \) be a sequence of \( \Gamma \) such that \( \gamma_n(0) \) converges to a point \( (\xi, p) \in L_{\text{reg}}(\Gamma) \). One can suppose that for \( i = 1, 2 \) the sequence \( \gamma_{n_i}^{-1}(0_i) \) converges to a point \( \xi_i \in \partial X_i \). If \( \eta_i \neq \xi_i \) for \( i = 1, 2 \), then, according to the lemma 1.3, \( \lim_{n \to +\infty} \gamma_{n_i}(\eta_i) = \xi_i \) and hence \( \lim_{n \to +\infty} \gamma_n(\eta) = \xi \).
Otherwise, applying the lemma 2.2, one obtains \( \gamma = (\gamma_1, \gamma_2) \in \Gamma \) such that 
\[
\gamma_i(\eta_i) \neq \xi_i^i \quad \text{for} \quad i = 1, 2 \quad \text{hence} \quad \lim_{n \to +\infty} \gamma_n \gamma(\eta) = \xi. \quad \text{In conclusion,} \quad F(\Gamma) \quad \text{is minimal}.
\]

Take \( p \in P(\Gamma) \) and let us prove that for any \( \eta \in F(\Gamma) \), \( (\eta, p) \in L(\Gamma) \). Since \( p \in P(\Gamma) \), there exist \( (\gamma_n)_{n\geq1} \in \Gamma \) and \( \xi \in F(\Gamma) \) such that 
\[
\lim_{n \to +\infty} \gamma_n(0) = (\xi, p). \quad \text{Using the fact that} \quad F(\Gamma) \quad \text{is minimal and that} \quad \gamma(\xi, p) = (\gamma(\xi), p) \quad \text{one obtains that} \quad (\eta, p) \in L(\Gamma). \quad \square
\]

**Proposition 2.4. —** Let \( \Gamma \) be a subgroup of \( I^+(X_1) \times I^+(X_2) \) such that \( \Gamma_1 \) and \( \Gamma_2 \) are strongly nonelementary and do not contain elliptic isometries, then \( L_{\text{reg}}(\Gamma) \neq \phi \).

\[
P(\Gamma) = \left\{ \frac{\ell(\gamma_1)}{\ell(\gamma_2)} / (\gamma_1, \gamma_2) \in \Gamma \quad \text{and is hyperbolic} \right\} \cap ]0, \infty[ \quad and \quad P(\Gamma) \quad \text{is an interval}.
\]

**Proof. —** Let us first prove that \( \Gamma \) contains hyperbolic isometries. Take \( \gamma = (\gamma_1, \gamma_2) \in \Gamma \), according to the lemma 2.2 there exists \( g = (g_1, g_2) \in \Gamma \) such that \( g_1(\gamma_1) \neq \gamma_1^+ \) and \( g_2(\gamma_2) \neq \gamma_2^+ \). Using the dynamics of parabolic and hyperbolic isometries ([10] section 8, theorems 16 and 17), one obtains that for some \( N, M \in \mathbb{Z} \) the isometry \( g_1 \gamma_i^N g_i^{-1} \gamma_i^M \) is hyperbolic for \( i = 1, 2 \). One deduces from the lemma 2.1 that \( L_{\text{reg}}(\Gamma) \neq \phi \).

Denote \( I = \left\{ \frac{\ell(\gamma_1)}{\ell(\gamma_2)} / (\gamma_1, \gamma_2) \in \Gamma \quad \text{and is hyperbolic} \right\} \cap ]0, \infty[ \).

Let us prove that \( P(\Gamma) = I \). According to the lemma 2.1, it is enough to prove that \( P(\Gamma) \subset I \).

Let \( p \in P(\Gamma) \) and \( \gamma_n = (\gamma_{n1}, \gamma_{n2}) \in \Gamma \) such that 
\[
\lim_{n \to +\infty} d(0_1, \gamma_{n1}(0_1)) = d(0_2, \gamma_{n2}(0_2)) = p. \quad \text{One can suppose that} \quad \lim_{n \to +\infty} \gamma_i^+ = \xi_i^+ \quad \text{and} \quad \lim_{n \to +\infty} \gamma_i^- = \xi_i^- \quad \text{for} \quad i = 1, 2. \quad \text{Using the lemma 2.2, one obtains} \quad g = (g_1, g_2) \in \Gamma \quad \text{such that} \quad g_i(\xi_i^+) \neq \xi_i^- \quad \text{. According to the lemma 1.3,} \quad \lim_{n \to +\infty} (g_i \gamma_{n_i})^+ = g_i(\xi_i^+) \quad \text{and} \quad \lim_{n \to +\infty} (g_i \gamma_{n_i})^- = \xi_i^-, \quad \text{hence since} \quad g_i(\xi_i^+) \neq \xi_i^-, \quad \text{for} \quad n \quad \text{large enough,} \quad g_i \gamma_{n_i} \quad \text{is hyperbolic, moreover} \quad \text{there exists} \quad K > 0 \quad \text{such that} \quad d(0_i, (g_i \gamma_{n_i})^- (g_i \gamma_{n_i})^+) < K \quad \text{for any} \quad n > 0 \quad \text{. Let} \quad z_{n_i} \in ((g_i \gamma_{n_i})^- (g_i \gamma_{n_i})^+) \quad \text{one has} \quad \ell(g_i \gamma_{n_i}) = d(z_{n_i}, g_i \gamma_{n_i}(z_{n_i})) \quad \text{hence} \quad \ell(g_i \gamma_{n_i}) \leq d(0_i, g_i \gamma_{n_i}(0_i)) \leq 2K + \ell(g_i \gamma_{n_i}). \quad \text{Since} \quad \lim_{n \to +\infty} d(0_i, g_i \gamma_{n_i}(0_i)) = +\infty, \quad \text{one deduces from the previous inequality that} \quad p = \lim_{n \to +\infty} \frac{\ell(g_i \gamma_{n_i})}{\ell(g_{2n} \gamma_{n2})}. \quad \text{In conclusion} \quad P(\Gamma) \subset I.\]
Let us prove that $I$ is an interval. Take $\ell = \ell(\gamma_1)$ and $\ell' = \ell(\gamma_2')$ in $I$. Suppose $\ell < \ell'$ and let us prove that $[\ell, \ell'] \subset I$. Since $\Gamma_1$ is strongly nonelementary there exists $h = (h_1, h_2) \in \Gamma$ such that

$$\{h_1(\gamma_1^+), h_1(\gamma_1^-)\} \cap \{\gamma_1'^+, \gamma_1'^-\} = \phi.$$ 

Set $g = h^{-1} \gamma h$. Remark that $\ell(g_1) = \ell(\gamma_1)$. One can suppose that $\{g_2^+, g_2^-\} \cap \{\gamma_2'^+, \gamma_2'^-\} = \phi$ or that $g_2^+ = \gamma_2^+$ by taking $g^{-1}$ if necessary. Applying the lemma 1.4, there exist $N \geq 1$ and $d > 0$ such that for any $n, m \in \mathbb{Z}$:

$$|\ell(g_i^N \gamma_i'^N m) - |n|\ell(g_i^N) - |m|\ell(\gamma_i'^N)| \leq d$$

for $i = 1, 2$. One deduces from this inequality that

$$\lim_{k \to +\infty} \frac{\ell(g_1^{Nk} \gamma_1'^{Nk})}{\ell(g_2^{Nk} \gamma_2'^{Nk})} = \frac{|n|\ell(\gamma_1) + |m|\ell(\gamma_1')}{|n|\ell(\gamma_2) + |m|\ell(\gamma_2')}.$$

In conclusion, $\ell(\gamma_1)/\ell(\gamma_2) \in I$ for any $q \in \mathbb{Q}_+^*$ hence $[\ell, \ell'] \subset I$. □

Let us introduce a family of subgroups of $I^+(X_1) \times I^+(X_2)$ called graph groups. Fix a subgroup $\Gamma_1 \subset I^+(X_1)$ and a faithful representation $\rho : \Gamma_1 \to I^+(X_2)$. The graph group denoted by $\Gamma_\rho$ associated to $\rho$ is defined by $\Gamma_\rho = \{(\gamma_1, \rho(\gamma_1))/\gamma_1 \in \Gamma_1\}$.

**Remark 2.5.** — In the particular case where $\Gamma_1$ and $\Gamma_2 = \rho(\Gamma_1)$ are convex-cocompact (i.e., the closure of the set of closed geodesics in $\Gamma_i \setminus X_i$ is compact) $\rho$ induces an homeomorphism $\varphi$ between $L(\Gamma_1)$ and $L(\rho(\Gamma_1))([T])$, and $F(\Gamma_\rho) = \{(\xi, \varphi(\xi))/\xi \in L(\Gamma_1)\}$.

Fix a system of generators $S_1 = \{s_1, \ldots, s_n\}$ of $\Gamma_1$ and put $S_2 = \{\rho(s_1), \ldots, \rho(s_n)\}$. Since $\Gamma_i$ is convex cocompact, there is a quasi-isometry between $(\Gamma_i, |s_i|)$ and $(\Gamma_i(0_1), d)$ ([Bo]). This property implies that $L(\Gamma_\rho) = L_{\text{reg}}(\Gamma_\rho)$.

**Corollary 2.6.** — Let $\Gamma_\rho$ be a graph group of $I^+(Y)$ associated to $\rho : \Gamma_1 \to \Gamma_2$. Suppose that $\Gamma_1$, $\Gamma_2$ are strongly nonelementary subgroups of $I^+(X_1)$ and $I^+(X_2)$ without elliptic elements and that $L(\Gamma_\rho) = L_{\text{reg}}(\Gamma_\rho)$. Then there exists $k > 0$ such that $\ell(\gamma_1) = k\ell(\rho(\gamma_1))$ for any $\gamma_1 \in \Gamma_1$ if and only if $L(\Gamma_\rho)$ is minimal.

**Proof.** — According to the proposition 2.4, one has

$$L(\Gamma_\rho) = F(\Gamma_\rho) \times \left\{\frac{\ell(\gamma_1)}{\ell(\rho(\gamma_1))}/\gamma_1 \in \Gamma_1 \text{ and is hyperbolic} \right\}.$$ 

Since $F(\Gamma_\rho)$ is minimal and $\Gamma_\rho(F(\Gamma_\rho) \times \{p\}) = F(\Gamma_\rho) \times \{p\}$ then $L(\Gamma_\rho)$ is minimal if and only if $L(\Gamma_\rho) = F(\Gamma_\rho) \times \{k\}$. □
Suppose that $X_1$ and $X_2$ are symmetric spaces of rank 1 and $\Gamma_1, \Gamma_2$ are Zariski dense. If $\rho$ preserves the length then, according to the corollary 2.6, one has $L(\Gamma_\rho) = F(\Gamma_\rho) \times \{1\}$. This property implies, according to a result proved in [2] (theorem 1.2) that $\Gamma_\rho$ is not Zariski dense. Applying a criterion proved in [7],[8], one obtains the following already known result:

**Corollary 2.7 ([7])**. — Suppose that $X_1$ and $X_2$ are symmetric spaces of rank 1 and $\Gamma_1, \Gamma_2$ are Zariski dense. If $\rho$ preserves the length then $X_1$ and $X_2$ are isometric and $\Gamma_1, \Gamma_2$ are conjugate by an isometry. See [14, 13, 15, 16] for similar results.

The following result is partially proved in [5].

**Proposition 2.8.** — Let $\Gamma$ be a subgroup of $I^+(X_1) \times I^+(X_2)$ acting freely on $Y$. If $L(\Gamma) = L_{\text{reg}}(\Gamma)$ then $\Gamma$ is a graph group $\Gamma_\rho$ and $\rho$ preserves the type of isometries.

**Proof.** — Let us prove that for $i = 1, 2$ the projection $q_i : \Gamma \to I^+(X_1)$ is injective. Suppose that $\gamma = (\text{Id}, \gamma_2) \in \Gamma$, since $\Gamma$ acts freely, $\gamma_2$ is not elliptic, hence $\gamma^n(0)$ converges to a point in $\partial Y_{\text{sing}}$ which contradicts the fact that $L(\Gamma) \cap \partial Y_{\text{sing}} = \phi$. In conclusion $q_1$ and $q_2$ are injective and hence $q_2 \circ q_1^{-1}$ is an isomorphism. This proves that $\Gamma = \Gamma q_2 \circ q_1^{-1}$. Using the fact that $L(\Gamma) = L_{\text{reg}}(\Gamma)$ and the lemma 1.1, one obtains that $q_2 \circ q_1^{-1}$ preserves the type of isometries. □

### 3. Shadow lemma for $(\beta, p)$-conformal measures

In this section one adapts the work of P. Albuquerque [1] and of M. Burger [4], replacing the symmetric space by the product of pinched Hadamard manifolds $Y = X_1 \times X_2$.

Set $\partial X_1 \times \partial X_2 \times \{\infty\} = \partial X_1$ and $\partial X_1 \times \partial X_2 \times \{0\} = \partial X_2$, using this notation, one identifies $\partial Y$ with $\partial X_1 \times \partial X_2 \times \{0, \infty\}$ (see section 2). For $p \in [0, \infty]$, denote $\partial Y_p = \partial X_1 \times \partial X_2 \times \{p\}$. Let $\xi = (\xi_1, \xi_2, p) \in \partial Y$ and $a_1, a_2 \geq 0$ such that $a_1^2 + a_2^2 = 1$ and $p = \frac{a_1}{a_2}$; for $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in $Y$, set $B_\xi(x, y) = a_1 B_{\xi_1}(x_1, y_1) + a_2 B_{\xi_2}(x_2, y_2)$. If $r(t)$ is a geodesic ray with extremity $\xi$ then $B_{\xi}(x,y) = \lim_{t \to +\infty} d(x, r(t)) - d(y, r(t))$ ([B-G-S]). Fix an origin $0 = (0_1, 0_2) \in Y$. For $g \in I(Y)$, denote $|g'(\xi)| = e^{B_{\xi}(0_0, g^{-1}(0))}$. One says that a subgroup $\Gamma \subset I(Y)$ is discrete if it acts properly discontinuously on $Y$. 

VOLUME 25 (2006-2007)
Définition 3.1. — Let $\Gamma$ be an infinite discrete subgroup of $I(Y)$ and $\beta \geq 0, p \in [0, \infty]$. A $\beta$-conformal measure $\mu$ on $\partial Y$ is a finite Borel measure such that for any Borel subset $B \subset \partial Y$ one has:

$$\forall \gamma \in \Gamma, \mu(\gamma(B)) = \int_B |\gamma'(\xi)|^\beta d\mu(\xi)$$

A $(\beta, p)$-conformal measure is a $\beta$-conformal measure whose support is included in $\partial Y_p$.

Denote $P(s)$ its Poincaré series $\sum_{\gamma \in \Gamma} e^{-sd(0, \gamma(0))}$ and $\delta(\Gamma)$ the critical exponent of $P(s)$. Since the curvature of $X$ is bounded from the below, $\delta(\Gamma)$ is finite, suppose $\delta(\Gamma) > 0$, let $h : \mathbb{R}^+ \to \mathbb{R}^+$ be a suitable function such that $Q(s) = \sum_{\gamma \in \Gamma} h(d(0, \gamma(0))) e^{-sd(0, \gamma(0))}$ diverges at $s = \delta(\Gamma)$ [18]. For $s > \delta(\Gamma)$, one defines a measure:

$$\sigma^s = \frac{\sum_{\gamma \in \Gamma} h(d(0, \gamma(0))) e^{-sd(0, \gamma(0))} D_{\gamma(0)}}{\sum_{\gamma \in \Gamma} h(d(0, \gamma(0))) e^{-sd(0, \gamma(0))}}$$

where $D_{\gamma(0)}$ denotes the Dirac mass at $\gamma(0)$.

A Patterson-Sullivan measure, $\sigma$, is a weak limit as $s \to \delta(\Gamma)$. The support of $\sigma$ is included in $L(\Gamma)$ and $\sigma$ satisfies the following $\delta(\Gamma)$-conformal property [1] : $\forall \gamma \in \Gamma, \forall B$ Borel subset of $\partial X$ :

$$\sigma(\gamma(B)) = \int_B |\gamma'(\xi)|^{\delta(\Gamma)} d\sigma(\xi).$$

Let $q$ be the map from $\partial Y$ onto $[0, \infty]$ defined by $q(\eta_1, \eta_2, p) = p$. Disintegrating $\sigma$ along the fibers of $q$ one obtains for some $p \in [0, \infty]$ such that $\sigma(\partial Y_p) \neq 0$, a $(\delta(\Gamma), p)$-conformal measure $\sigma_p(\cdot[A])$. Let $x = (x_1, x_2) \in Y - \{0\}$ with $x_1 \neq 0$ and $x_2 \neq 0$, there exists a unique Weyl chamber $W = [0_1, \xi_1] \times [0_2, \xi_2]$ centered at 0 passing through $x$. The projection of $x$ in the direction $p \in [0, \infty]$, denoted $\pi^p(x)$, is by definition the orthogonal projection of $x$ into the geodesic ray $[0, (\xi_1, \xi_2, p)]$. Put $p = \frac{a_1}{a_2}$ with $a_i \geq 0$ and $a_1^2 + a_2^2 = 1$. If $x_1 = 0_1$ or $x_2 = 0_2$ then $\pi^p(x)$ depends on the choice of $W$, but $d(0, \pi^p(x)) = a_1 d(0_1, x_1) + a_2 d(0_2, x_2)$ is well defined. Denote $B(x, r)$ the ball centered at $x$ with radius $r > 0$ ; for $A \subset Y$, the Shadow, $S(x, A)$, of $A$ relative to $x$, is defined by $S(x, A) = \{ \xi \in \partial Y/\xi \text{ belongs to the boundary of a Weyl chamber centered at } x \text{ meeting } A \}$.

Théorème 3.2 (Shadow lemma). — Let $\Gamma$ be an infinite discrete subgroup of $I(Y)$. Suppose that $L(\Gamma)$ is not included in a small cell defined by $\{\xi_1\} \times \partial X_2 \times [0, \infty] \cup \partial X_1 \times \{\xi_2\} \times [0, \infty]$. If $\mu$ is a $(\beta, p)$-conformal...
measure then there exists $d_0 > 0$ such that for every $r \geq d_0$, there exists $c(r) \geq 1$ such that:

$$\frac{1}{c(r)}e^{-\beta d(0,\pi^p(\gamma(0)))} \leq \mu(S(0, B(\gamma(0), r))) \leq c(r)e^{-\beta d(0,\pi^p(\gamma(0)))}$$

for all $\gamma \in \Gamma$.

Proof. — Let us equip $\partial X_1 \times \partial X_2$ with the product distance associated to the Gromov-Bourdon distance introduced in section 1 on each factor and with a standard metric with length 1 on $[0, \infty]$. □

Step 1. — There exist $0 < q < \mu(\partial Y)$ and $\varepsilon_0 > 0$ such that for any measurable set $F$ contained in a $\varepsilon_0$-neighborhood of a small cell, $\mu(F) \leq q$.

Proof. — Let $d = \sup \{\mu(\text{small cell})\}$. Since a sequence of small cells has an accumulation point, in Hausdorff topology, which is itself a small cell, $d$ is realized and $d < \mu(\partial Y)$ because the support of $\mu$ is not included in a small cell. Set $q = \frac{\mu(\partial Y) + d}{2}$, one has $q > d$. Suppose that there exist a sequence of reals $(\varepsilon_n)_{n \geq 1}$ with $\lim_{n \to +\infty} \varepsilon_n = 0$ and a sequence $(F_n)_{n=1}$ of measurable sets in $\partial Y$ included in a $\varepsilon_n$-neighborhood of some small cell such that $\mu(F_n) \geq q$. One can suppose that $F_n$ converges, in Hausdorff topology, to a small cell $S$ satisfying $\mu(S) \geq q > d$. This contradicts the definition of $d$. □

Step 2. — For all $\varepsilon > 0$ there exists $c_0 > 0$ such that for any $c > c_0$ and $x = (x_1, x_2)$ the set $\partial Y_p - S(x, B(0, c)) \cap \partial Y_p$, is contained in a $\varepsilon$-neighborhood of a small cell.

Proof. — Fix $\varepsilon > 0$, since $X_i$ are pinched Hadamard manifolds, there exists $c > 0$ such that $\partial X_i - S(x_i, B(0, c))$ is included in a $\varepsilon$-neighborhood of some $\eta_i \in \partial X_i$, for each $x_i \in X_i$. One has $S(x, B(0, c) \times B(0, c)) \subset S(x, B(0, \sqrt{2}c))$ hence

$$\partial Y_p - S(x, B(0, \sqrt{2}c)) \cap \partial Y_p \subset \partial Y_p - S(x, B(0, c)x B(0, 2c)) \cap \partial Y_p.$$ 

Let $(\xi_1, \xi_2, p)$ belong to the previous set, then $[x_1, \xi_1] \times [x_2, \xi_2] \cap B(0, c) \times B(0, 2c) = \emptyset$ and hence $\xi_1 \notin S(x_1, B(0, c))$ or $\xi_2 \notin S(x_2, B(0, 2c))$. In conclusion, if $c > c_0$ then there exists $(\eta_1, \eta_2) \in \partial X_1 \times \partial > X_2$ such that

$$\partial Y_p - S(x, B(0, \sqrt{2}c)) \cap \partial Y_p \subset B(\eta_1, \varepsilon) \times \partial X_2 \times \{p\} \cup \partial X_1 \times B(\eta_2, \varepsilon) \times \{p\}$$

which is included in a $\varepsilon$-neighborhood of $\{\eta_1\} \times \partial X_2 \times [0, \infty] \cup \partial X_1 \times \{\eta_2\} \times [0, \infty]$. 

VOLUME 25 (2006-2007)
Step 3. — Let $c > 0$, for all $\gamma \in \Gamma$ and $\xi \in \partial Y$ such that $\xi \in S(0, B(\gamma(0), c)) \cap \partial Y_p$ one has

$$| - B_\xi(0, \gamma(0)) + d(0, \pi^p(\gamma(0))) | \leq 6c.$$  

Proof. — Let $\gamma = (\gamma_1, \gamma_2) \in \Gamma$, suppose $\gamma(0) \neq 0$ and consider a Weyl chamber $W$ centered at 0 passing through $\gamma(0)$. Take $\xi' \in \partial W \cap \partial Y_p$, one has $B_\xi(0, \gamma(0)) = d(0, \pi^p(\gamma(0)))$.

Choose now $\xi \in S(0, B(\gamma(0), c)) \cap \partial Y_p$, there exists a Weyl chamber $W'$ centered at 0 such that $[0, \xi] \subset W'$ and $W' \cap B(\gamma(0), c) \neq \phi$. Let $x = (x_1, x_2) \in W' \cap B(\gamma(0), c)$. One has

$$| - B_\xi(0, \gamma(0)) + B_\xi(0, x) | = |B_\xi(x, \gamma(0))| \leq d(x, \gamma(0)) \leq c.$$  

To prove the required inequality it is enough to show that $| - B_\xi(0, x) + B_\xi(0, \gamma(0)) | \leq 5c$. Set $\xi = (\xi_1, \xi_2, p)$ and $L_i = [0, \xi_i]$ one has $W' = L_1 \times L_2$.

Remark that $W' \cap B(\gamma_1(0_1), c) \times B(\gamma_2(0_2), c) \neq \phi$ hence $L_i \cap B(\gamma_i(0_i), c) \neq \phi$. Take $y_i \in L_i$ such that $d(0_i, y_i) = d(0_i, \gamma_i(0_i))$, one has $B_\xi(0, \gamma(0)) = B_\xi(0, y)$ hence

$$| - B_\xi(0, x) + B_\xi(0, \gamma(0)) | = |B_\xi(x, y)| \leq d(x, y).$$  

Moreover using the fact that $L_i \cap B(\gamma_i(0_i), c) \neq \phi$ we get $d(0_i, y_i) \leq 3c$ by the triangle inequality. This proves that $d(x, y) \leq 5c$.

End of the proof of the theorem 3.2. — Pick $c_0, \varepsilon_0$ in steps 1 and 2. Then for $c > c_0$ and for all $\gamma \in \Gamma$ one has:

$$\mu(\partial Y_p) \geq \mu(S(\gamma^{-1}(0), B(0, c))) \geq \mu(\partial Y_p) - q > 0.$$  

Moreover $S(\gamma^{-1}(0), B(0, c)) = \gamma^{-1}(S(0, B(\gamma(0), c)))$ hence

$$\mu(S(\gamma^{-1}(0), B(0, c))) = \int_{S(0, B(\gamma(0), c))} e^{\beta B_\xi(0, \gamma(0))} d\mu(\xi) \geq \mu(\partial Y_p) - q.$$  

By step 3 we get

$$\mu(S(0, B(\gamma(0), c))) = (\mu(\partial Y_p) - q) C_1(c) e^{-\beta d(0, \pi^p(\gamma(0)))}$$  

and

$$\mu(S(0, B(\gamma(0), c))) \leq \mu(\partial Y_p) C_2(c) e^{-\beta d(0, \pi^p(\gamma(0)))}.$$  

For $p \in [0, \infty]$ and $r > 0$ set:

$$B_p(0, r) = \{ y \in Y - \{0\} / d(0, \pi^p(y)) \leq r \}.$$
Corollary 3.3. — Let $\Gamma$ be an infinite discrete subgroup of $I(Y)$. Suppose that $L(\Gamma)$ is not included in a small cell. If $\mu$ is a $(\beta, p)$-conformal measure with $p \in ]0, \infty[$ then there exists $c > 0$ such that for any $\ell > 0$:

$$|\{\gamma(0)/\gamma \in \Gamma, \gamma(0) \in B_p(0, \ell)\}| \leq c e^{\beta \ell}.$$  

Proof. — Since $p \neq 0$ and $p \neq \infty$ the ball $B_p(0, \ell)$ is compact, hence there exists $C_1 > 0$ such that for any Weyl chamber $W$ centered at 0 and for any $\ell > 0$ the set $\{y \in W - \{0\}/\ell \leq d(0, \pi^p(y)) \leq \ell + 1\}$ is covered by $C_1 \ell$ balls of radius 1. Using the fact that is discrete, for $c > 0$ one obtains $C_2 > 0$ such that for any $\ell > 0$ and any Weyl chamber $W$ centered at 0 one has :

$$|\{\gamma \in \Gamma/\ell \leq d(0, \pi^p(\gamma(0)) \leq \ell + 1, W \cap B(\gamma(0), c)) \neq \phi\}| \leq C_2 \ell.$$  

Therefore any $\xi \in \partial Y_{\text{reg}}$ belongs to at most $C_2 \ell$ shadows of balls $B(\gamma(0), c)$ for such $\gamma$’s. Thus there exists $C_3 > 0$ such that

$$\sum_{\{\gamma \in \Gamma/\ell \leq d(0, \pi^p(\gamma(0))) \leq \ell + 1\}} \mu(S(0, B(\gamma(0), c)) \leq C_3 \ell \mu(\partial Y_p).$$

Applying the theorem 3.2, one obtains for $c \geq d$ a constant $C_4 > 0$ such that :

$$|\{\gamma \in \Gamma/\ell \leq d(0, \pi^p(\gamma(0))) \leq \ell + 1\}|e^{-\beta \ell} \leq C_4 \ell.$$  

Finally there exists $C_5 > 0$ such that :

$$|\{\gamma(0)/\gamma \in \Gamma, \gamma(0) \in B_p(0, \ell)\}| \leq \sum_{n=0}^{\ell-1} |\{\gamma \in \Gamma/n \leq d(0, \pi^p(\gamma(0))) \leq n + 1\}| \leq C_4 \sum_{n=0}^{\ell-1} ne^{\beta n} \leq C_5 \ell e^{\ell n}.$$  

□

Let $\Gamma$ be a subgroup of $I(Y)$ satisfying the hypothesis of corollary 3.3. One defines the Poincaré series relative to $p \in [0, \infty]$ by :

$$P_p(s) = \sum_{\gamma \in \Gamma} e^{-sd(0, \pi^p(\gamma(0))).}$$

Denote $\delta_p(\Gamma)$ the critical exponent of $P_p(s)$. Since

$$d(0, \pi^p(\gamma(0))) \leq d(0, \gamma(0)),$$
one has $\delta_p(\Gamma) \geq \delta(\Gamma)$. Write $p = \frac{a}{b}$ with $a^2 + b^2 = 1$, if $p \neq 0$ and $p \neq \infty$ then

$$\delta_p(\Gamma) = \inf_{s > 0} \left\{ \frac{s}{(\gamma_1, \gamma_2) \in \Gamma} \sum e^{-s(ad(0_1, \gamma_1(0_1)) + bd(0_2, \gamma_2(0_2)))} < \infty \right\}.$$ 

Let $A = \left\{ (x_1, x_2) \in \mathbb{R}^2_+ / \sum_{(\gamma_1, \gamma_2) \in \Gamma} e^{-x_1d(0_1, \gamma_1(0_1)) - x_2d(0_2, \gamma_2(0_2))} < \infty \right\}$.

By Hölder inequality, $A$ is convex. Since $A$ is convex and $\delta_p(\Gamma) \geq \delta(\Gamma)$, there exists at most one $q \in [0, \infty]$ such that $\delta_q(\Gamma) = \delta(\Gamma)$. Suppose $\delta_p(\Gamma) < \infty$ and consider a Patterson-Sullivan measure $\sigma$ on $\partial Y$. Since $\sigma(\partial Y) \neq 0$, disintegrating $\sigma$ along $[0, \infty]$ we get a $\delta(\Gamma)$-conformal measure $\sigma_p$ supported by $\partial Y_p$ such that $\sigma_p(\partial Y) \neq 0$. Since

$$\delta_p(\Gamma) = \limsup_{R \to +\infty} \frac{\log |\Gamma_0 \cap B_p(0, R)|}{R},$$

if $p \neq 0$ and $p \neq \infty$, according to the corollary 3.3, one has $\delta_p(\Gamma) \leq \delta(\Gamma)$. Moreover $\delta_p(\Gamma) \geq \delta(\Gamma)$, hence $\delta_p(\Gamma) = \delta(\Gamma)$. This proves the following corollary:

**Corollary 3.4.** — Let $\Gamma$ be an infinite discrete subgroup of $I(Y)$. Suppose that $L(\Gamma)$ is not included in a small cell. If for some

$$p \in ]0, \infty[, \sigma_p(\partial Y) \neq 0$$

then $\delta_p(\Gamma) = \delta(\Gamma)$ and such $p$ is unique.

**Remark 3.5.** — In the particular case where $\Gamma = \Gamma_\rho$ and $\Gamma_1$ and $\rho(\Gamma_1)$ are convex cocompact, $L(\Gamma_\rho) = L_{\text{reg}}(\Gamma_\rho)$ (Remark 2.5) and hence, there exists a unique $p_0 \in P(\Gamma)$ such that $\sigma = \sigma_{p_0}$

**BIBLIOGRAPHY**