T. F. PANKRATOVA

Semiclassical eigenstates in a multidimensional well

<http://www.numdam.org/item?id=TSG_1992-1993__11__147_0>
SEMICLASSICAL EIGENSTATES IN A MULTIDIMENSIONAL WELL

T.F. PANKRATOVA

ABSTRACT. The two-dimensional Schrödinger operator with an analytic potential, having a non-degenerated minimum (well) at the origin, is considered. Under the Diophantine condition on the frequencies, the full asymptotic series (the Plank constant \hbar tending to zero) for eigenfunctions with given quantum numbers (n_1, n_2), concentrated at the bottom of the well, is constructed, the Gaussian-like asymptotics being valid in a neighbourhood of the origin which is independent of \hbar. For small quantum numbers the second approximation to the eigenvalues is written in terms of the derivatives of the potential.

§1. INTRODUCTION

We consider the Schrödinger equation

$$-\frac{\hbar^2}{2}\Delta u + Vu = Eu$$

where $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplace operator, V is a real valued function defined on \mathbb{R}^n. We are interested in the semiclassical ($\hbar \to 0$) asymptotics of the discrete spectrum of this operator in the case when the potential V has one or several nondegenerated minima, "wells".

If V has a finite number of identical wells which differ only by space translations, the spectrum of the corresponding Schrödinger operator is organized in the following way. There is a set of finite groups of eigenvalues, the distance between the groups being of the order \hbar, and the distance between eigenvalues in each group, the splitting, being exponentially small with respect to \hbar. The problem is to find the widths of these splittings. This problem was considered by different authors [1–8] and was completely solved in one-dymensional case. In multidimensional case the problem seems to be more difficult, and up to now there was no significant progress. In this paper, under some nondegeneracy conditions on V, we write down asymptotic series for eigenstates and the corresponding eigenvalues, the former being concentrated at the bottom of the well.

§2 ASYMPTOTIC EXPANSIONS FOR THE EIGENSTATES

For simplicity we consider the case of two dimensions but the case of n dimensions is in principle the same.
Let the potential V be analytic and represented by the Taylor series

\begin{equation}
V(x_1, x_2) = \frac{\omega_1^2}{2} x_1^2 + \frac{\omega_2^2}{2} x_2^2 + \sum_{i+j \geq 3} u_{ij} x_1^i x_2^j
\end{equation}

convergent in a bicylinder $|x_k| \leq r$, $k = 1, 2$, with $\omega_{1,2} > 0$.

We construct the asymptotic series for eigenvalues and eigenfunctions of (1.1) in the following form:

\begin{equation}
E_{n_1, n_2} = \sum_{k=1}^{\infty} E_k^{n_1, n_2} \hbar^k,
\end{equation}

\begin{equation}
u_{n_1, n_2} = \sum_{0 \leq i \leq n_1, 0 \leq j \leq n_2} A_{ij}^{n_1, n_2} D_{n_1}^{(i)} \left(\frac{\psi_1}{\sqrt{n_1}} \right) D_{n_2}^{(j)} \left(\frac{\psi_2}{\sqrt{n_2}} \right) \hbar^{i+j},
\end{equation}

\begin{equation}
A_{ij}^{n_1, n_2} = \sum_{k=0}^{\infty} (A_{ij}^{n_1, n_2})_k \hbar^k,
\end{equation}

here $D_{n_1}^{(i)}$ denotes the i-th order derivative of the function of the parabolic cylinder i.e. the bounded solution of the Weber equation:

\begin{equation}
D_{n_1}^{(i)}(t) = \left[t^2 - (2n_1 + 1) \right] D_{n_1}(t), \quad D_{n_1}(t) = H_n e^{-it}, \quad H_n = \frac{e^{it^2}}{(-2)^n} \left(e^{-t^2} \right)^{(n)},
\end{equation}

$\psi_r = \psi_r(\vec{x})$, $\vec{x} = (x_1, x_2)$, $r = 1, 2$, $(A_{ij}^{n_1, n_2})_k = (A_{ij}^{n_1, n_2})_k(\vec{x})$, $k = 0, 1, 2, \ldots$ are functions independent of \hbar.

Substituting (2.2), (2.3) into (1.1) we find the following phase equation

\begin{equation}
(\nabla S)^2 = 2V,
\end{equation}

for each of the phase functions

\begin{equation}
S^\pm = \frac{1}{2} (\psi_1^2 \pm \psi_2^2),
\end{equation}

and the following recurrent systems for the amplitude coefficients $(A_{ij}^{n_1, n_2})_k$ and numbers $E_k^{n_1, n_2}$

\begin{equation}
A_0^{n_1, n_2} \Delta_0 = 0,
\end{equation}
where

\[\tilde{A}_k = (A_{00}^{n_1 n_2})_k, (A_{10}^{n_1 n_2})_k, (A_{01}^{n_1 n_2})_k, (A_{11}^{n_1 n_2})_k \]
\[T \]
\(k = 1, 2, 3, ... \)

\[\tilde{A}_k = ((A_{00}^{n_1 n_2})_k, (A_{10}^{n_1 n_2})_k, (A_{01}^{n_1 n_2})_k, (A_{11}^{n_1 n_2})_k)^T = (A^k_1, A^k_2, A^k_3, A^k_4)^T, \]

\(T \) denoting transposition,

\[A^v_{01, n_2} = \begin{pmatrix} -\cdot & \cdot & 0 \\ \cdot & -\cdot & 0 \\ \cdot & 0 & -\cdot \\ 0 & \cdot & -\cdot \end{pmatrix}, \]

\[\kappa = \sum_{s=1}^{2} \frac{2n_s + 1}{2} (\nabla \psi_s)^2 - E^{n_1 n_2}_1, \]

\[a_s = \nabla \psi_s \cdot \nabla + \frac{\Delta \psi_s}{2}, \]

the fat dot denoting a scalar product in \(\mathbb{R}^n \),

\[\hat{a}_s = \psi_s^2 \left(\nabla \psi_s \cdot \nabla + \frac{\Delta \psi_s}{2} \right) + \psi_s (\nabla \psi_s)^2, s = 1, 2, \]

\[A^{n_1 n_2}_1 = \begin{pmatrix} -\frac{1}{2} \Delta + E_2^{n_1 n_2} & -\kappa_1 & -\kappa_2 & 0 \\ 0 & -\frac{1}{2} \Delta + E_2^{n_1 n_2} & 0 & -\kappa_2 \\ 0 & 0 & -\frac{1}{2} \Delta + E_2^{n_1 n_2} & -\kappa_1 \\ 0 & 0 & 0 & -\frac{1}{2} \Delta + E_2^{n_1 n_2} \end{pmatrix}, \]

\[\kappa_s = (2n_s + 1) \nabla \psi_s \cdot \nabla + \frac{\Delta \psi_s}{2}, s = 1, 2. \]

\[A^{n_1 n_2}_k = I_4 E^{n_1 n_2}_{k+1}, k = 2, 3, ... \]

\(I_4 \) denoting the 4 \(\times \) 4 identity matrix.

In the next two sections we will describe shortly how the equations (2.6), (2.8), (2.9) can be solved.
§3 The phase functions.

In this section we consider the equation (2.6). We search solutions of the equation (2.6) in the form of the following power series

\begin{equation}
S^\pm(x_1, x_2) = \frac{\omega_1}{2} x_1^2 \pm \frac{\omega_2}{2} x_2^2 + \sum_{i+j \geq 2} S^\pm_{ij} x_1^i x_2^j
\end{equation}

and find the recurrent formulae for the coefficients

\begin{equation}
S^\pm_{ij} = \frac{\bar{v}_{ij}}{i\omega_1 \pm j\omega_2},
\end{equation}

where \(\bar{v}_{ij}\) depend on \(v_{ij}\) and \(S^\pm_{k1}, k + l \leq i + j - 1\).

It is easy to see that for some values of positive numbers \(\omega_1, \omega_2\) the denominators in expression (3.2) are equal to zero.

In order to solve (2.6) we consider diffeomorphisms

\begin{equation}
\Phi^\pm: (y_1, y_2) \longrightarrow (y_1 + \sum_{i+j \geq 2} \Phi^\pm_{i,j} y_1^i y_2^j, y_1 + \sum_{i+j \geq 2} \Phi^\pm_{i,j} y_1^i y_2^j)
\end{equation}

which transform the vector fields \(\nabla S^\pm \cdot \nabla\) to the following normal forms:

\begin{equation}
L^\pm_0 = \omega_1 y_1 \frac{\partial}{\partial y_1} \pm \omega_2 y_2 \frac{\partial}{\partial y_2}.
\end{equation}

To formulate the existence theorem we need two definitions.

We say that positive numbers \(\omega_1\) and \(\omega_2\) are nonresonant if they satisfy the following conditions

\begin{equation}
\omega_1 \neq k\omega_2, \quad \omega_2 \neq k\omega_1, \quad k = 2, 3, ...
\end{equation}

Positive numbers \(\omega_1\) and \(\omega_2\) are said to be Diophantine if there exist positive numbers \(\alpha\) and \(C\) such that for nonnegative integers \(i, j, \) \(i + j \geq 1\),

\begin{equation}
|i\omega_1 - j\omega_2| \geq \frac{C}{(i + j)^\alpha}
\end{equation}

Theorem. Let the potential \(V\) be represented by a series of the form (2.1) convergent in a neighbourhood of the origin.

1. If numbers \(\omega_1\) and \(\omega_2\) are nonresonant then there exist a unique positive analytic function \(S^+\) which can be represented by convergent series of the form (3.1) in some neighbourhood of the origin and satisfies the equation (2.6), and an analytic diffeomorphism \(\Phi^+\) which transforms vector field \(\nabla S^+ \cdot \nabla\) to the normal form \(L^+_0\) given by (3.4).

2. If the numbers \(\omega_1\) and \(\omega_2\) are Diophantine then there exist a unique analytic function \(S^-\) which can be represented by convergent series of the form (3.1) in some neighbourhood of the origin and satisfies the equation (2.6), and an analytic diffeomorphism \(\Phi^-\) which transforms vector field \(\nabla S^- \cdot \nabla\) to the normal form \(L^-_0\) given by (3.4).
Note 1. The proof of this theorem can be found in [11]. To suppress small denominators which appear in the series (3.1) and prove the theorem, we use the Newton method with the simultaneous change (3.3) of variables at each step.

Note 2. The analytic at the origin functions ψ_1 and ψ_2 can be found uniquely from the equation (2.7), see [12].

§4. Amplitude coefficients and eigenvalues
Here we construct solutions of the equations (2.8), (2.9). The first approximation to an eigenvalue is

(4.1) \[E_1^{n_1 n_2} = \left(n_1 + \frac{1}{2} \right) \omega_1 + \left(n_2 + \frac{1}{2} \right) \omega_2. \]

Let the frequencies ω_1, ω_2 be Diophantine. Then the solution \tilde{A}_0 of the system (2.8) can be found in the form

(4.2) \[\tilde{A}_0 = \Psi J \tilde{B}_0, \]

where

(4.3) \[\Psi = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\psi_1} & 0 & 0 \\ 0 & 0 & \frac{1}{\psi_2} & 0 \\ 0 & 0 & 0 & \frac{1}{\psi_1 \psi_2} \end{pmatrix}, \]

(4.4) \[J = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix}, \]

(4.5) \[\tilde{B}_0 = (B_1^+, B_1^-, B_2^+, B_2^-)^T, \]

$B_i^\pm = c_i e^{\pi i}, \ l = 1, 2$, the functions P_i^\pm being analytic solutions of the equation

(4.6) \[L_0^\pm \hat{P}_i^\pm = d_i \hat{\kappa} - \hat{\theta}^\pm, \ l = 1, 2, \ d_1 = 1, \ d_2 = -1, \]

meaning a change of variables, $F(x_1, x_2) = \hat{F}(y_1, y_2),$

(4.7) \[\theta^\pm = \psi_1 \frac{\Delta \psi_1}{2} \pm \psi_2 \frac{\Delta \psi_2}{2}. \]

The existence of these solutions in some neighbourhood of the origin is proven in [12]. One can prolong them analytically onto a larger domain by the formula
\[S = \int p_1 \, dx_1 + p_2 \, dx_2 \] where the integral is taken along the trajectory of the corresponding Hamiltonian system (the formulae written in [10]).

One can see that the functions \(A_l^0, l = 2, 3, 4 \), have singularities at the origin (where \(\psi_1, l = 1, 2 \), vanish).

Let us express the functions \(D_n \) and their derivatives by Hermitian polynomials \(H_n \) and the exponents, we shall find that

\[
q_n^{[0]} = e^{-\frac{\phi_1^2 + \phi_2^2}{\hbar}} \cdot \{ H_{n_1} H_{n_2} [A_1^0 - \psi_1 A_2^0 - \psi_2 A_3^0 + \psi_1 \psi_2 A_4^0] \\
+ \sqrt{\hbar} [H'_{n_1} H_{n_2} (A_2^0 - \psi_2 A_4^0) + H_{n_1} H'_{n_2} (A_3^0 - \psi_1 A_4^0)] \\
+ \hbar H'_{n_1} H'_{n_2} A_4^0 \}.
\]

We see that the senior term in respect to \(\hbar \) has no singularities. The first multiplier in square brackets is equal to \(2B^2 \) and that is an analytic function accordig to the said above. The functions \(A_2^0 - \psi_2 A_4^0, A_3^0 - \psi_1 A_4^0 \) and \(A_4^0 \) have singularities (of the type \(\frac{1}{\psi_1}, \frac{1}{\psi_2} \) correspondently). These singularities disappear in (4.8) when the quantum numbers \(n_1 \) and \(n_2 \) are even and they remain when the mentioned numbers are odd.

The presence of the singularities in the case of odd \(n_1 \) and \(n_2 \) reflects the fact that the equations \(\psi_1 = 0 \) or \(\psi_2 = 0 \) do not define the genuine zeros of the eigenfunction \(u_{n_1, n_2} \) as it follows formally from (2.3). The genuine zeros are shifted and in general case their lines have no intersections. In fact singularities cancel if one takes into account all subsiquent approximations.

To give an idea how the singularities cancell let us consider for simplicity the case \(n_1 = n_2 = 1 \).

\section{5 Quantum Numbers 1,1.}

In this case \(H_1(t) = t, H'_1(t) = 1 \), so we have to look for the second approximation of the eigenfunction \(u_{1,1} \) and the corresponding eigenvalue in the following form:

\[
\begin{align*}
\psi_1^{[1]} &= e^{\frac{t}{\hbar}} (2\psi_1 \psi_2 B + \hbar G).
\end{align*}
\]

(Here \(B = B_2^+ = c_2^+ e^{\theta_2^+} \), \(P_2^+ \) being a solution of \(4.6, l=2 \)).

\[
\begin{align*}
E_{1,1}^{[2]} &= \hbar E_{1,1}^{1,1} + \hbar^2 E_{2,1}^{1,1},
\end{align*}
\]

\[
\begin{align*}
E_{1,1}^{1,1} &= \frac{3}{2} \omega_1 + \frac{3}{2} \omega_2.
\end{align*}
\]

From the Schrödinger equation (1.1) we find the following equation for the function \(G_2 \)

\[
\begin{align*}
\nabla S \cdot \nabla G + \left(\frac{\Delta S}{2} - E_{1,1}^{1,1} \right) G &= (\psi_2 \Delta \psi_1 + \psi_1 \Delta \psi_2) B + 2\psi_2 \nabla \psi_1 \cdot \nabla B \\
&+ 2\psi_1 \nabla \psi_2 \cdot \nabla B + \psi_1 \psi_2 \Delta B + 2E_{2,1}^{1,1} \psi_1 \psi_2 B.
\end{align*}
\]
Now the function \(\kappa \) defined by (2.11) is the following:

\[
\kappa = \frac{3}{2} (\nabla \psi_1)^2 + \frac{3}{2} (\nabla \psi_2)^2
\]

(it depends on \(n_1, n_2 \)). So

\[
\frac{\Delta S}{2} - E_1^{1,1} = \theta + \kappa - (\nabla \psi_1)^2 - (\nabla \psi_2)^2,
\]

(\(\theta \) is defined by (4.7) with sign +). One can see that

\[
(\theta + \kappa - (\nabla \psi_1)^2 - (\nabla \psi_2)^2)_{(0,0)} = -\omega_1 - \omega_2.
\]

Finding the function \(G \).

We consider at first the corresponding homogeneous equation with the change of variables (3.3) (with sign +):

\[
L_0 \tilde{G}^0 + \left(\tilde{\theta} + \tilde{\kappa} - (\nabla \tilde{\psi}_1)^2 - (\nabla \tilde{\psi}_2)^2 \right) \tilde{G}^0 = 0,
\]

\(L_0 \) defined by (3.4). We look for the solution of (5.8) in the following form:

\[
\tilde{G}^0 = y_1 y_2 e^{\tilde{\phi}}
\]

and find the equation for \(\tilde{\mathcal{P}} \)

\[
L_0 \tilde{\mathcal{P}} = (\nabla \tilde{\psi}_1^2) + (\nabla \tilde{\psi}_2^2) - \tilde{\theta} - \tilde{\kappa} - (\omega_1 + \omega_2)
\]

with the right-hand side vanishing at the origin. Due to Lemma 3.1 of [2] there exists a unique analytic solution of (5.10) vanishing at the origin. Let \(\tilde{\mathcal{P}} \) be that solution.

Now we look for the solution of (5.4) (in variables \(y_1, y_2 \)) in the following form

\[
\tilde{G} = \tilde{U} e^{\tilde{\phi}} = \frac{\tilde{U}}{y_1 y_2} y_1 y_2 e^{\tilde{\phi}}.
\]

Putting (5.11) in (5.4) we obtain the following equation for the function \(\tilde{U} \)

\[
L_0 \tilde{U} - \omega_1 \tilde{U} - \omega_2 \tilde{U} = \tilde{F} e^{-\tilde{\phi}},
\]

by \(\tilde{F} \) is denoted the right-hand side of the equation (5.4).

Lemma. If the right-hand side of (5.12) is analytic and its second mixed partial derivative with respect to \(y_1, y_2 \) vanishes at the origin then there exists a unique analytic solution of (5.12) also with the vanishing at the origin second mixed partial derivative with respect to \(y_1, y_2 \).

This lemma can be proven mainly in the same way as Lemma 3.1 in [2].
The second term of the eigenvalue.

The condition of solvability of the equation (5.12), given by the Lemma, reads:

\[(\tilde{\mathcal{F}}e^{-\tilde{\mathcal{F}}})_{11} = 0,\]

where \((u)_{ij}\) means the \(i, j\)-th Taylor coefficient of the function \(u(\tilde{y})\).

We can satisfy this condition with the corresponding choice of \(E_{2}^{11}\), that is

\[E_{2}^{11} = \frac{-(\Delta \tilde{B})_{00}}{2} \]

\[\quad - \frac{1}{\sqrt{\omega_{1}\omega_{2}}} \left(e^{-\tilde{\mathcal{F}}} \left[\tilde{\psi}_{2}(\Delta \tilde{\psi}_{1}/2) + \tilde{\psi}_{1}(\Delta \tilde{\psi}_{2}/2) \tilde{B} + \tilde{\psi}_{2} \nabla \tilde{\psi}_{1} \cdot \nabla \tilde{B} + \tilde{\psi}_{1} \nabla \tilde{\psi}_{2} \cdot \nabla \tilde{B} \right] \right)_{11},\]

where \(\psi_{1}, \psi_{2}, \mathcal{P}\) and \(B\) are mentioned above functions (the corresponding Taylor coefficients in the right-hand side are written out in [13] in terms of Taylor coefficients of \(V\)).

Zeros of the eigenfunction.

The equation of the line of the zeros of the eigenfunction \(u_{11}\) is the following

\[2\psi_{1}\psi_{2}e^{\mathcal{P}_{1}^{+}} + \hbar \mathcal{P} = 0.\]

It is clear that \((U)_{00} = 0\) (because \(F(0,0) = 0\), see (5.4)). The first Taylor coefficients \((U)_{10}\) and \((U)_{01}\) of \(U\) can be found from (5.12). They are

\[(U)_{10} = \frac{1}{\sqrt{\omega_{1}}} [(\psi_{2})_{20} + (\psi_{2})_{02}] + 2\sqrt{\frac{\omega_{2}}{\omega_{1}}} (\mathcal{P}_{1}^{+})_{01},\]

\[(U)_{01} = \frac{1}{\sqrt{\omega_{2}}} [(\psi_{1})_{20} + (\psi_{1})_{02}] + 2\sqrt{\frac{\omega_{1}}{\omega_{2}}} (\mathcal{P}_{2}^{+})_{10},\]

the right-hand sides (written out in [13]) depend on \(\omega_{1}, \omega_{2}\) and \(v_{ij}, i + j = 3\), and do not vanish at the origin in general case. So in the zero approximation the lines of zeros of \(u_{1,1}\), namely

\[
\begin{align*}
\psi_{1} &= 0, \\
\psi_{2} &= 0,
\end{align*}
\]

intersect at the origin. In the next approximation they split into the two branches of a hyperbola in a neighbourhood of the origin:

\[2\sqrt{\omega_{1}\omega_{2}}x_{1}x_{2} + \hbar [(U)_{10}x_{1} + (U)_{01}x_{2}] = 0.\]

One of these branches goes through the origin. In general case these lines do not intersect. They have only a "quasi-intersection".
REFERENCES

1. M.V.Fedoryuk, Mat.Sb. 68(110) (1965), 81–110. (Russian)