Ursula Hamenstädt

Some aspects of the Laplace operator in negative curvature

<http://www.numdam.org/item?id=TSG_1991__S9__95_0>
Some aspects of the Laplace operator in negative curvature

Ursula HAMENSTÄDT
Mathematisches Institut
der Universität Bonn
Beringstrasse 1
D-W 5300 BONN 1
ALLEMAGNE
Let M be a compact Riemannian manifold of negative sectional curvature with universal covering \tilde{M}. This covering is diffeomorphic to \mathbb{R}^n and admits a natural compactification by adding a sphere $\partial \tilde{M}$ at infinity. The Wiener measure on paths induces for every $x \in \tilde{M}$ a probability measure ω^x on $\partial \tilde{M}$ which can naturally be considered as a Borel-probability measure on the fibre $T^1_x \tilde{M}$ at x of the unit tangent bundle $T^1 \tilde{M}$ of \tilde{M} ([P], [A], [AS]). These measures are equivariant under the action of the fundamental group Γ of M on $T^1 \tilde{M}$ and hence we can define a Borel-probability measure ω^* on the unit tangent bundle $T^1 M$ of M by $\omega^*(A) = \int_{x \in M} \omega^x(A \cap T^1_x M) dx$ (here dx is the normalized Lebesgue measure).

Recall that $T^1 M$ admits foliations W^i which are invariant under the action of the geodesic flow Φ^t ($i = s, ss$), the stable foliation W^s and the strong stable foliation W^{ss}. Each leaf of W^s is locally diffeomorphic to M and hence the Riemannian metric on M lifts to a Riemannian g^* on the leaves of W^s. The Laplace operator on the leaves with respect to this metric then induces a globally defined second order differential operator Δ^s on $T^1 M$ with continuous coefficients.

LEDRAPIER. — The measure ω^* is the unique harmonic measure for Δ^s, i.e. the unique measure such that $\int \Delta^s \varphi \, d\omega^* = 0$ for all smooth functions φ on $T^1 M$ (up to a constant, see [L3]).

Similarly we obtain an operator Δ^{ss} for W^{ss} and an invariant measure ω^{ss}. The projection of ω^{ss} is in the Lebesgue measure class and its conditionals on the fibres of $T^1 M \rightarrow M$ are the (non-normalized) Patterson-Sullivan measures ([L3], [Kn], [Y]).

Let λ be the Lebesgue-Liouville measure on $T^1 M$. Call M asymptotically harmonic if $\omega^{ss} = \lambda$.

Equivalent are (see [L1], [L2], [L3]) :

i) M is asymptotically harmonic.

ii) $\omega^* = \lambda$.

iii) $\omega^* = \omega^{ss}$.

iv) For every Busemann function θ on \tilde{M}, the function $e^{-h\theta}$ is minimal harmonic.

v) Let $G(x, y)$ be the Green's function on \tilde{M}. Then there are positive constants $C > 0, h > 0$ such that

$$\lim_{d(x, y) \rightarrow \infty} G(x, y) e^{h d(x, y)} = C .$$

Here the constant h equals the topological entropy of the geodesic flow Φ^t on $T^1 M$.

vi) The top of the L^2-spectrum of A on \tilde{M} equals $-\frac{h^2}{4}$. (This and related results can be found implicitly in [L1], [L3] and [H4]).

For $\dim M \leq 4$, locally symmetric spaces are the only asymptotically harmonic ones ([H4], [L4]). In fact in certain cases more can be said:

vii) If $\dim M = 2$ and if any two of the measures ω^*, ω^{**} and λ are equivalent (i.e. if they have the same measure zero sets) then M is asymptotically harmonic (and hence has constant curvature) ([K1], [K2], [L2], [H3]).

viii) If ω^{**} and λ are equivalent then M is asymptotically harmonic ([H4]).

Conjecture. — If any two of the measures $\omega^*, \omega^{**}, \lambda$ are equivalent then M is locally symmetric.

References

