KAZUYOSHI KIYOHARA

On Blaschke manifolds and harmonic manifolds

<http://www.numdam.org/item?id=TSG_1987-1988__6__33_0>
ON BLASCHKE MANIFOLDS AND HARMONIC MANIFOLDS

by Kazuyoshi KIYOHARA

0. — A compact riemannian manifold M is called a Blaschke manifold if the diameter of M and the injectivity radius of M coincide. It is known that if M is a Blaschke manifold, then M is diffeomorphic to S^n or \mathbb{RP}^n, or $\pi_1(M) = \{0\}$ and $H^*(M, \mathbb{Z}) \cong \mathbb{Z}$, \mathbb{CP}^n, \mathbb{HP}^n, \mathbb{CaP}^2.

The main problem about Blaschke manifolds is to know if the following conjecture, the Blaschke conjecture, is true or not: if M is a Blaschke manifold, then it would be a compact rank one symmetric space.

There are classes of riemannian manifolds related to Blaschke manifolds. A riemannian manifold M is called a globally harmonic manifold if the determinant of $d(\exp_p)_x : T_p M \to T_{\exp_p x} M$ $(p \in M$, $x \in T_p M)$ depends only on the norm $|x|$. A compact riemannian manifold is called a C_1-manifold if all of its geodesics are closed and have the same length 1. The relation is as follows:

compact, simply connected, globally harmonic \implies Blaschke $\implies C_1$.

The following results are known:

1. (Green, Berger et al.) — If (S^n, g) is a Blaschke manifold, then it is isometric to the standard one.

2. (Green, Berger et al.) — If (\mathbb{RP}^n, g) is a C_1-manifold, then it is isometric to the standard one.

3. (Kiyohara). — Let P be one of the projective spaces \mathbb{CP}^1, \mathbb{HP}^n $(n \geq 2)$, \mathbb{CaP}^2, and let (P, g) be a C_π-manifold. If the metric g is sufficiently close to the standard C_π-metric g_0, then (P, g) is isometric to the standard one (P, g_0).

4. (Zoll, Weinstein). — There are non-standard C_1-manifolds (S^n, g) for any dimension $n \geq 2$.
1. — From now on we assume M is a Blaschke manifold, $\pi_1(M) = \{0\}$, $H^*(M,\mathbb{Z}) \cong H^*(CP^n,\mathbb{Z})$ (dim $M = 2n$, $n \geq 2$), and the diameter of M is $\pi/2$. The followings are known about M:

1) For any $p \in M$ and any $q \in \text{Cut}(p)$ (the cut locus of p), the distance $d(p,q) = \pi/2$.

2) Every cut locus is a submanifold of codimension 2.

3) Let ρ be the bundle projection $TM \to M$, and let $\{\zeta_i\}$ be the geodesic flow on SM. Then $\rho \circ \zeta_{\pi/2} : S_p(M) \to \text{Cut}(p)$ is a fibre bundle whose fibres are great circles on S_pM.

4) For $p, q \in M$ with $d(p, q) = \pi/2$, we denote by $\Sigma(p, q)$ the union of geodesic orbits through p and q. Then $\Sigma(p, q)$ is a 2-dimensional submanifold diffeomorphic to S^2.

Now we define a mapping $I : SM \to SM$ as follows: since $H_2(M,\mathbb{Z}) \cong \mathbb{Z}$, we fix a positive generator. Then on each $\Sigma(p, q)$ the orientation is determined. Hence we have an orientation on each fibre S^1 of the fibre bundle $\rho \circ \zeta_{\pi/2} : S_pM \to \text{Cut}(p)$, because the fibre S^1 over $q \in \text{Cut}(p)$ is nothing but the unit sphere of $T_p\Sigma(p, q)$. So $I : SM \to SM$ is defined by the conditions:

1) If $v \in S_pM$, then $Iv \in S_pM$ and $\rho(\zeta_{\pi/2}v) = \rho(\zeta_{\pi/2}Iv)$.

2) $\langle v, Iv \rangle = 0$.

3) $\{v, Iv\}$ is positive in this order.

We extend the mapping I to $TM\setminus\{0\}$ homogeneously, and let $I_v : T_{p(v)}M \to T_{p(v)}M$ be the differential of $I|T_{p(v)}M\setminus\{0\}$ at v. From the definition the mapping I satisfies $I \circ I = (-1)$ identity. So it looks like an almost complex structure, and we have the following

Proposition A. — Assume $I_v^2 + 1 = 0$ for all $v \in SM$. Then $I : T_pM\setminus\{0\} \to T_pM\setminus\{0\}$ can be extended to a linear mapping on T_pM for every $p \in M$, i.e. I is an almost complex structure and it is integrable. Therefore (M, I) is a hermitian manifold. Moreover each cut locus is a complex submanifold and is holomorphically isomorphic to CP^{n-1}.

Proposition B. — Assume dim $M = 4$. If $I_v^2 + 1 = 0$ for all $v \in SM$ and if every cut locus is minimal, then M is isometric to (CP^2, g_0).

Lemma C. — If M is moreover globally harmonic, then $(I_v^2 + 1)^{n-1} = 0$ for every $v \in SM$ and every cut locus is minimal (dim $M = 2n$).

Corollary D. — If dim $M = 4$ and M is globally harmonic, then M is isometric to (CP^2, g_0).
Remarque. — This corollary is already known by a different method. See [1].

2. — For the proof of propositions we need some lemmas.

Lemma 1. There is a Jacobi field $Y(t)$ along the geodesic $\gamma_{\nu}(t) = \rho(\zeta_{t}v)$ such that
\[
\begin{bmatrix} Y(0) \\ Y'(0) \end{bmatrix} = \begin{bmatrix} 0 \\ Iv \end{bmatrix}, \quad \begin{bmatrix} Y(\pi/2) \\ Y'(\pi/2) \end{bmatrix} = \begin{bmatrix} 0 \\ -Iv \end{bmatrix}, \quad \bar{v} = \zeta_{\pi/2}v.
\]
Moreover if a Jacobi field $X(t)$ along $\gamma_{\nu}(t)$ satisfies $X(0) = X(\pi/2) = 0$ then $X(t)$ is a constant multiple of $Y(t)$.

For $X, Y \in T_p M, Y \neq 0$, we put $\nabla_X I \cdot Y = \nabla_{\theta/\theta t}(IY_t)_{t=0}$, where we take a curve $c(t)$ in M such that $c'(0) = X$, and Y_t is the parallel displacement of Y along $c(t)$. $\nabla_X I \cdot Y$ is linear in X, but not necessarily in Y.

Lemma 2. Let $Y(t)$ be a periodic Jacobi field along the geodesic $\gamma_{\nu}(t)$, $\nu \in SM$. Then we have a periodic Jacobi field $Z(t)$ along the geodesic $\gamma_{e^{s}I \nu}(t)$ ($e^{s}v = v \cos s + Iv \sin s$) such that
\[
\begin{bmatrix} Z(0) \\ Z'(0) \end{bmatrix} = \begin{bmatrix} Y(0) \\ (\cos s + \sin s I_v)v Y'(0) + \sin s (\nabla I \cdot v)Y(0) \end{bmatrix},
\]
\[
\begin{bmatrix} Z(\pi/2) \\ Z'(\pi/2) \end{bmatrix} = \begin{bmatrix} Y(\pi/2) \\ (\cos s + \sin s I_v)v Y'(\pi/2) - \sin s (\nabla I \cdot \bar{v})Y(\pi/2) \end{bmatrix},
\]
where $(\nabla I \cdot v)Y(0) = \nabla_Y(0)I \cdot v$, etc.

Lemma 3.
1) There are Jacobi fields $Y_1(t), Y_2(t)$ along $\gamma_{\nu}(t)$ such that
\[
\begin{bmatrix} Y_1(0) \\ Y_1'(0) \end{bmatrix} = \begin{bmatrix} I_v \\ -\nabla_v I \cdot v \end{bmatrix}, \quad \begin{bmatrix} Y_1(\pi/2) \\ Y_1'(\pi/2) \end{bmatrix} = \begin{bmatrix} -Iv \\ \nabla_{\bar{v}} I \bar{v} \end{bmatrix},
\]
\[
\begin{bmatrix} Y_2(0) \\ Y_2'(0) \end{bmatrix} = \begin{bmatrix} 2\nabla_v I \cdot v \\ R(I_v, v) - \nabla_v^2 I \cdot v \end{bmatrix}, \quad \begin{bmatrix} Y_2(\pi/2) \\ Y_2'(\pi/2) \end{bmatrix} = \begin{bmatrix} -2\nabla_{\bar{v}} I \cdot \bar{v} \\ -R(I_{\bar{v}}, \bar{v}) + \nabla_{\bar{v}}^2 I \cdot \bar{v} \end{bmatrix}.
\]
2) $\nabla_{e^{s}I \nu} I \cdot d^t I v = \nabla_{\nu} I \cdot v$.

Lemma 4. Let $Y(t)$ be a periodic Jacobi field along $\gamma_{\nu}(t)$. Then there is a periodic Jacobi field $Z(t)$ along $\gamma_{\nu}(t)$ such that
\[
\begin{bmatrix} Z(0) \\ Z'(0) \end{bmatrix} = \begin{bmatrix} I_v Y(0) \\ I_v Y'(0) + (\nabla I \cdot v - \nabla v \cdot I)Y(0) + \{(Y(0), \nabla_v I \cdot v) + (Y'(0), I v)\}v \end{bmatrix},
\]
\[
\begin{bmatrix} Z(\pi/2) \\ Z'(\pi/2) \end{bmatrix} = \begin{bmatrix} I_{\bar{v}} Y(\pi/2) \\ -I_{\bar{v}} Y'(\pi/2) - (\nabla I \bar{v} - \nabla \bar{v} I)Y(\pi/2) - \{(Y(\pi/2), \nabla_v I \bar{v}) + (Y'(\pi/2), I \bar{v})\} \bar{v} \end{bmatrix}.
\]

3. Proof of Proposition A. — Fix $p \in M$ and consider the S^1–principal bundle $\rho \circ \zeta_{\pi/2} : S_p M \to \text{Cut}(p)$, where the S^1–action is given by $e^{s}I$, $0 \leq s \leq 2\pi$.
We define a 1-form ω on $S_p M$ by
$$\omega(X) = \langle X, Iv \rangle, \quad X \in T_v(S_p M) = \{ Y \in T_p M \mid \langle v, Y \rangle = 0 \}.$$
As is easily seen, ω is a connection form, i.e. invariant under the S^1-action. We have
$$d\omega(X, Y) = \langle (I_\ast v - t I_\ast v) X, Y \rangle.$$
So there is a unique closed 2-form Ω on $\text{Cut}(p)$ such that $(\rho \circ \zeta_{\pi/2})^* \Omega = d\omega$. We can see that $[(1/2\pi) \Omega]$ is a generator of $H^2(\text{Cut}(p), \mathbb{Z}) \cong \mathbb{Z}$. Therefore
$$(1/2\pi)^{n-1} \int_{\text{Cut}(p)} \Omega^{n-1} = 1$$
derived under a proper orientation of $\text{Cut}(p)$, and thus
$$\int_{S_p M} \omega \wedge (d\omega)^{n-1} = (2\pi)^n.$$
Now put $J_\ast = I_\ast v - t I_\ast v, \quad S_\ast = I_\ast v + t I_\ast v$. Then $2I_\ast v = J_\ast + S_\ast$ and
$$I_\ast v + 1 = 0 \iff J_\ast^2 + S_\ast^2 + 4 + J_\ast S_\ast + S_\ast J_\ast = 0. \quad (#)$$
Let e_1, \ldots, e_{2n-2} be an orthonormal basis of the orthogonal complement to $R_v + R_\ast v$ in $T_p M$ such that $J_\ast e_{2i-1} = \lambda_i e_{2i}, \quad J_\ast e_{2i} = -\lambda_i e_{2i-1}, \quad \lambda_i \geq 0, \quad i = 1, \ldots, n - 1$. By (#) we have
$$-\lambda_i^2 + |S_\ast e_{2i}|^2 + 4 = 0.$$
Hence $\lambda_i \geq 2$, and $\lambda_i = 2$ for every i if and only if $S_\ast = 0$. Then
$$(\omega \wedge (d\omega)^{n-1})(I_\ast v, e_1, \ldots, e_{2n-2}) = (n - 1)! \prod_{i=1}^{n-1} \lambda_i \geq 2^{n-1}(n-1)!,$$
and the equality holds if and only if $S_\ast = I_\ast v + t I_\ast v = 0$. Therefore we have
$$(2\pi)^n = \int_{S_p M} \omega \wedge (d\omega)^{n-1} \geq 2^{n-1}(n-1)! \text{vol}(S_p M).$$
But $\text{vol}(S_p M)$ is just $2\pi^n/(n-1)!$. So the equality holds in the above inequality. Hence we have $S_\ast = I_\ast v + t I_\ast v = 0$ for any $v \in SM$. Since $I_\ast^2 v + 1 = 0$, it follows that $t_\ast v I_\ast v = 1$. This implies that the mapping $I : S_p M \to S_p M$ is an isometry, and therefore the restriction of a linear orthogonal transformation of $T_p M$. Hence I is extended as a tensor field of type (1,1) with $I^2 = -1$, i.e. an almost complex structure on M, and (M, I) is an almost hermitian manifold.

By using the square of the endomorphisms on the space of Jacobi fields in Lemma 4, one gets
$$\langle \{ I(\nabla I \cdot v - t \nabla I \cdot v) - (\nabla I \cdot v - t \nabla I \cdot v) I \} X, Y \rangle = 0, \quad X, Y \perp v, I_\ast v.$$
Moreover Lemma 3 (2) gives
$$\langle \{ I(\nabla I \cdot v + t \nabla I \cdot v) - (\nabla I \cdot v + t \nabla I \cdot v) I \} X, Y \rangle = 0, \quad X, Y \perp v, I_\ast v.$$
These formula gives
\[\nabla_{IX} I = I \nabla_X I \]
for any vector \(X \). By this it is easy to see that the Nijenhuis’ tensor vanishes, and \((M, I) \) turns out to be a hermitian manifold.

It is now clear that each cut locus is a complex submanifold of \(M \) and the \(S^1 \)-fibration \(\rho \circ \zeta_{\pi/2} : S_p M \to \text{Cut}(p) \) is nothing but the standard Hopf fibration: \(S^{2n-1} \to \mathbb{C}P^{n-1} \). Hence the last statement of the proposition follows.

Proof of Proposition B. For \(v \in SM \) we define the symmetric endomorphism \(\Phi_v \) of \(T_{\rho(v)} M \) by \(\Phi_v v = \Phi_v I v = 0 \) and
\[
\langle \Phi_v X, Y \rangle = -\langle h(X, Y), v \rangle, \quad X, Y \in T_{\rho(v)} M, \quad X, Y \perp v, I v,
\]
where \(h \) is the second fundamental form of \(\text{Cut}(\rho \zeta_{\pi/2} v) \) in \(M \) at \(\rho(v) \). If we take a curve \(c(t) \) in \(\text{Cut}(\rho \zeta_{\pi/2} v) \) such that \(c'(0) = X \), and a normal vector field \(v_t \) to \(\text{Cut}(\rho \zeta_{\pi/2} v) \) along \(c(t) \), we have
\[
\langle \Phi_v X, Y \rangle = \langle \nabla_{\partial / \partial t} v_t |_{t=0}, Y \rangle.
\]
So the following lemma is clear.

Lemma 5. \(\Phi_I v X = I \Phi_v X + (\nabla_X I)v, \) \(X \in T_{\rho(v)} M, \) \(X \perp v, I v \).

Since every cut locus is minimal, it follows that \(\text{tr} \Phi_v = 0 \) for any \(v \in Sm \), \(\text{tr} \) being the trace. Hence in view of Lemma 5 one gets
\[\text{tr} (\nabla I)v = 0 . \]
This together with the formula \(\nabla_{IX} I = I \nabla_X I \), shown in the proof of Proposition A, implies that \(\nabla I = 0 \), i.e. \((M, I) \) is kählerian.

By applying Lemma 1 to the Jacobi field \(Y_z \) in Lemma 3,
\[R(Iv, v)v = c(v) Iv, \quad v \in SM, \]
where \(c \) is a function on \(SM \) satisfying \(c(\zeta_{\pi/2} v) = c(v) \). As is easily seen, \(c(v) \) is pointwise constant, i.e. if \(v_1 \) and \(v_2 \) are based at the same point on \(M \), then \(c(v_1) = c(v_2) \). Using the fact that for any two points \(p \) and \(q \) on \(M \), there is a point \(m \) such that \(d(p, m) = d(q, m) = \pi/2 \), we see the constancy of \(c(v) \).

Since \((M, I) \) is kählerian and has constant holomorphic sectional curvature, it must be holomorphically isometric to \((\mathbb{C}P^2, g_0) \).

Lemma C is an immediate consequence of Lemma 4.

Reference

Kazuyoshi KIYOHARA
Max-Planck-Institut fur Mathematik
Gottfried-Claren-Strasse 26
D - 5300 BONN 3
(R.F.A.)