Peter Grandits

Some remarks on L^∞, H^∞, and BMO

Séminaire de probabilités (Strasbourg), tome 33 (1999), p. 342-348

<http://www.numdam.org/item?id=SPS_1999__33__342_0>
Some remarks on L^∞, H^∞ and BMO

Peter Grandits

1 Introduction

In [1] C. Dellacherie, P.A. Meyer and M. Yor proved that L^∞ is neither closed nor dense in BMO, except in trivial cases (i.e. if the underlying filtration is constant). The same is true for H^∞ (c.f. [3] section 2.6 and [5]). So one may ask, whether it is possible to find a martingale $X \in BMO$, which has a best approximation in L^∞ resp. in H^∞, i.e.

$$\inf_{Z \in L^\infty} \|X - Z\|_{BMO} = \|X - \tilde{Z}\|_{BMO} \text{ for some } \tilde{Z} \in L^\infty$$

resp.

$$\inf_{Z \in H^\infty} \|X - Z\|_{BMO} = \|X - \tilde{Z}\|_{BMO} \text{ for some } \tilde{Z} \in H^\infty.$$

It is easy to see that this is equivalent to the question: does there exist a martingale $X \in BMO$ s.t.

$$\inf_{Z \in L^\infty} \|X - Z\|_{BMO} = \|X\|_{BMO}$$

resp.

$$\inf_{Z \in H^\infty} \|X - Z\|_{BMO} = \|X\|_{BMO}.$$

holds? R. Durrett poses this problem for L^∞ in [2], p. 214, and he conjectures a solution for X. We show in this paper that a discrete time analogue of Durrett’s example works, but in continuous time it does not. In the case of H^∞ we provide a class of processes (including Durrett’s example), for which $\tilde{Z} = 0$ is indeed the best approximation in H^∞. Note that for the negative result in L^∞ we work with the norm $\| \cdot \|_{BMO_1}$, as the problem was posed by Durrett in this way. For the positive result in H^∞ we use $\| \cdot \|_{BMO_2}$, which seems to be more natural in this case.

2 Notations and Preliminaries

We denote by BMO the space of continuous martingales X on a given stochastic basis $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$, satisfying the "usual conditions" of completeness and right continuity, for which the the following equivalent norms are finite

$$\|X\|_{BMO_1} = \sup_T \{\|E[|X_\infty - X_T|]\|_{\mathcal{F}_T}\} = \sup_T \left\{\left(\frac{E[|X_\infty - X_T|]}{P[T < \infty]}\right)^{1/2}\right\}.$$
\[||X||_{BMO_2} = \sup_T \{ ||E[(X_{\infty} - X_T)^2|\mathcal{F}_T]|\infty \} = \sup_T \left\{ \left(\frac{E[(X_{\infty} - X_T)^2]}{P[T < \infty]} \right)^{\frac{1}{2}} \right\} = \sup_T \{ ||E[(X_{\infty} - (X)_T)|\mathcal{F}_T]|\infty \}. \]

Here \(T \) runs through all stopping times. In the present context \(H^\infty \) denotes the space of continuous martingales \(M \) on \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\) s.t.

\[||M||_{H^\infty} = \text{ess sup} \langle M \rangle^\infty < \infty \]

holds. We also use the following standard notation. If \(M \) is a martingale and \(T \) a stopping time, we denote by \(M^T \) the martingale stopped at time \(T \), i.e.

\[M^T_t = M_{t \wedge T} \]

and by \(^TM \) the martingale started at time \(T \), i.e.

\[^TM = M - M^T. \]

The next easy lemma is maybe folklore, but for the convenience of the reader we provide a proof.

Lemma 2.1 Let \(X \) be in \(BMO \) and \(R \) an arbitrary stopping time. Then we have

\[||R^X||_{BMO_2} \leq ||X||_{BMO_2}. \]

Proof: We prove that \(||\int H dX||_{BMO_2} \leq ||X||_{BMO_2} \), if \(H \) is previsible with \(|H| \leq 1 \), which immediately implies the assertion of the lemma.

\[||\int H dX||_{BMO_2} = \sup_T \{ ||E[\int_0^\infty H^2 d(X)|\mathcal{F}_T]|\infty \} = \sup_T \{ ||E[\int_T^\infty d(X)|\mathcal{F}_T]|\infty \} = \sup_T \{ ||E[(X_{\infty} - (X)_T)|\mathcal{F}_T]|\infty \} = ||X||_{BMO_2}^2. \]

\[\square \]

3 The case \(L^\infty \) - a discrete time example

We give in this section an example of a discrete-time process, for which \(\hat{Z} = 0 \) is indeed the best approximation in \(L^\infty \), if we use the space \(bmo_1 \) (c.f. [4]) as an analogue to \(BMO_1 \) in the continuous-time setting. Let \((W_n)_{n=0}^\infty \) be a standard random walk on \((\Omega, \mathcal{F}, (\mathcal{F}_n)_{n=0}^\infty, P)\) with natural filtration, i.e. \(P[\{\Delta W_n = 1\}] = P[\{\Delta W_n = -1\}] = \frac{1}{2} \) and \(W_0 = 0 \). Let \(T \) be the stopping time \(T = \inf\{n|\Delta W_n = -1\} \), and \(B_n = W_i^n - W_T^n \). This is a discrete-time analogue of the continuous martingale, which we consider in section 4, and which was suggested by Durrett in [2].

Denoting the \(bmo_1 \)-norm by \(|| \cdot ||_* \), an easy calculation gives

\[||B||_* = \sup_S ||E[|B_{\infty} - B_S||\mathcal{F}_S]|\infty = \sup_{k \in N_0} ||E[|B_{\infty} - B_S||B_S = k]|\infty = \sum_{r=-1}^\infty |r|^2^{-r(r+2)} = 1, \]

\[\square \]
where the supremum is taken over all stopping times S and N_0 denotes the set \{0,1,2,...\}. We denote by $L_\infty (\Omega, \mathcal{F}, (\mathcal{F}_n)_{n=0}^\infty, P)$ the space of all bounded martingales with respect to the given filtration. Our claim is

Proposition 3.1

$$\inf_{Z \in L_\infty} \|B - Z\|_* = 1,$$

i.e. $\hat{Z} = 0$ is the best approximation in L_∞ of B.

Proof: We shall show that assuming the existence of a $Z \in L_\infty$, which fulfills $\|B - Z\|_* = \alpha < 1$, leads to a contradiction.

As the definition of the bmo$_1$-norm is invariant with respect to an additive constant, we assume that $Z \geq 0$ holds. Furthermore the function $f(t) = \|B - tZ\|_*$ is a continuous convex function with $f(0) = 1$ and $f(1) = \alpha$. Therefore we may assume w.l.o.g. that $\|Z\|_\infty < \frac{1}{4}$ holds, and we remain with

$$Z_\infty = a_k \quad \text{on } C_k \text{ for } k = -1,0,1,...,$$

where

$$0 \leq a_k \leq \frac{1}{4} \quad (1)$$

holds, and the atoms C_k are defined by $C_k = \{B_\infty = k\}$. Since the filtration is given by

$$\mathcal{F}_n = \{\mathcal{C}_{-1}, \mathcal{C}_0, ..., \mathcal{C}_{n-2}, (\mathcal{C}_{n-1} \cup \mathcal{C}_n \cup ...\} \quad n = 0,1,2,...,$$

and $P[C_k] = 2^{-(k+2)}$, one can easily calculate $Z_n = E[Z_\infty | \mathcal{F}_n]$ for $n = 0,1,2,...$

$$Z_n = a_k \quad \text{on } C_k \text{ for } k = -1,0,1,...,n-2$$

$$Z_n = \sum_{r=n-1}^\infty a_r 2^{-(r+2-n)} =: \gamma_{n-1} \quad \text{on } (\mathcal{C}_{n-1} \cup \mathcal{C}_n \cup ...)$$

Hence we get for $n = 0,1,2,...$

$$B_\infty - B_n = Z_\infty - Z_n = 0 \quad \text{on } C_{-1} \cup C_0 \cup ... \cup C_{n-2},$$

dep.

$$B_\infty - B_n = s - n \quad \text{on } C_s \text{ for } s = n-1,n,n+1,...$$

and

$$Z_\infty - Z_n = a_s - \gamma_{n-1} \quad \text{on } C_s \text{ for } s = n-1,n,n+1,...$$

As the supremum over all stopping times in the definition of the bmo$_1$-norm can be replaced by a supremum over all fixed times n, we calculate $E[|B_\infty - B_n - Z_\infty + Z_n| | \mathcal{F}_n]$, which is 0 on $C_{-1}, C_0, ..., C_{n-2}$ and

$$\sum_{s=-1}^\infty (s - a_{n+s} + \gamma_{n-1}) 2^{-(s+2)}$$

on $C_{n-1} \cup C_n \cup ...$.
Using eq. (1) and our assumption \(\| B - Z \|_\infty = \alpha < 1 \), we conclude that

\[
(a_{n-1} - \gamma_{n-1}) \frac{1}{2} + |a_n - \gamma_{n-1}| \frac{1}{2} + \sum_{s=n}^{\infty} (-a_{n+s} + \gamma_{n-1}) 2^{-(s+2)} \leq -\rho := \alpha - 1
\]

has to hold for \(n = 0, 1, 2, ... \). We now distinguish two cases.

Case 1: \(a_n + \gamma_{n-1} \geq 0 \)

A simple calculation gives

\[
a_{n-1} \leq \gamma_{n-1} - \rho.
\]

Case 2: \(a_n + \gamma_{n-1} < 0 \)

In this case we get \(-\gamma_{n-1} + \frac{2}{3}a_{n-1} + \frac{1}{3}a_n \leq -\frac{2}{3}\rho \). This inequality and our assumption in case 2 allow us to conclude that \(a_{n-1} < a_n \) has to hold, and we finally get

\[
a_{n-1} < \gamma_{n-1} - \frac{2}{3}\rho.
\]

Denoting now \(\sigma = \frac{2}{3}\rho > 0 \), we can combine case 1 and case 2, which yields

\[
-a_{n-1} + \gamma_{n-1} > \sigma \quad n = 0, 1, 2, ...
\]

or

\[
-\frac{1}{2}a_{n-1} + \sum_{s=n}^{\infty} a_s 2^{-(s-n+2)} > \sigma \quad n = 0, 1, 2, ...
\]

Defining \(A = \sup_{s=-1,0,...} a_s \), implies the existence of an \(M \), s.t. \(a_M > A - \sigma \), and we infer that

\[
-\frac{1}{2}a_M + \sum_{s=M+1}^{\infty} a_s 2^{-(s-M+1)} < \frac{\sigma}{2}
\]

holds, which is a contradiction to eq. (2).

\[\Box\]

4 The case \(L^\infty \) - a continuous time example

In contrast to the discrete case it seems to be not so easy to find a martingale in \(BMO \) in continuous time, which has a best approximation \(\hat{Z} = 0 \) in \(L^\infty \). It is shown in this section that the - in some sense - natural guess of Durrett [2] of a martingale, which is quasi-stationary, in a sense to be defined later, does not work. However, it will be shown in section 5 that this quasistationarity is sufficient to guarantee a best approximation \(\hat{Z} = 0 \) in \(L^\infty \).

Let \((W_t)_{t \geq 0} \) be a standard Brownian motion on \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\). As in [2] we define \(R_0 = 0, R_n = \inf\{t > R_{n-1} : |W_t - W_{R_{n-1}}| > 1\} \), \(N = \inf\{n : W_{R_n} - W_{R_{n-1}} = -1\} \) and finally \(X_t = W_{t \wedge N} \). The following formula is valid for \(\alpha \in (-1, 1) \) (c.f. [2], p. 208)

\[
\|X\|_{BMO_1} = \sup_{T} \|E[|X_\infty - X_T|]\|_\infty = \sup_{a \in (-1, 1)} E[|X_\infty - X_T| | X_T = a] = \sup_{a \in (-1, 1)} 1(\alpha, 1)(1 - a^2) + 1(0, 1)(a + 1)(2 - a) = \frac{9}{8}.
\]

Our claim is now
Proposition 4.1

\[\inf_{z \in L^\infty} \|X - Z\|_{BMO} < \frac{9}{8}, \]

where \(L^\infty = L^\infty(\Omega, \mathcal{F}, \mathcal{F}, \mathbb{P}) \) is the space of continuous bounded martingales.

This answers negatively the question posed by Durrett in Ex. 1 of sect. 7.7 in [2].

Proof: In order to prove the proposition some further notation is needed. We define

\[
A_r = \{ \omega : X_\infty = r \} \quad r = -1, 0, 1, \ldots
\]

\[
S_n = \inf \{ t > R_{n-1} : X_t - X_{R_{n-1}} = \frac{1}{2} \} \quad n = 1, 2, 3, \ldots,
\]

where we use the convention \(\inf 0 = \infty \). Furthermore we need

\[
A_r^+ = A_r \cap \{ S_{r+2} = \infty \}
\]

\[
A_r^- = A_r \cap \{ S_{r+2} < \infty \}, \quad r = -1, 0, 1, \ldots
\]

and finally

\[
M_t = \left\{ \begin{array}{ll}
0 & R_{n-1} \leq t < S_n \\
1 & S_n \leq t < R_n,
\end{array} \right. \quad n = 1, 2, 3, \ldots
\]

The process \(M \) indicates, whether \(X \) has reached the value \(X_{R_{n-1}} + \frac{1}{2} \) in the stochastic interval \([R_{n-1}, R_n]\) or not, and is essential for the calculation of the conditional expectations occurring in the sequel.

A straightforward but lengthy application of the optional stopping theorem yields the following table of conditional probabilities, which we will need later on.

<table>
<thead>
<tr>
<th>(r = 0, 1, 2, \ldots)</th>
<th>(-1 < a \leq \frac{1}{2})</th>
<th>(\frac{1}{2} < a < 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P[A_{r+1}^+ X_T = a, M_T])</td>
<td>(\frac{1-a}{3}(1 - M_T))</td>
<td>0</td>
</tr>
<tr>
<td>(P[A_{r+1}^- X_T = a, M_T])</td>
<td>(\frac{a+1}{6}(1 - M_T) + \frac{1-a}{2} M_T)</td>
<td>(\frac{1-a}{2})</td>
</tr>
<tr>
<td>(P[A_r^+ X_T = a, M_T])</td>
<td>(\frac{1+a}{3})</td>
<td>(\frac{1+a}{3})</td>
</tr>
<tr>
<td>(P[A_r^- X_T = a, M_T])</td>
<td>(\frac{1+a}{12})</td>
<td>(\frac{1+a}{12})</td>
</tr>
</tbody>
</table>

We define now a bounded continuous martingale \(Z \), which gives a better approximation of \(X \) than the trivial approximation \(Z = 0 \):

\[
Z_\infty = \delta 1_{|X_{R_{n-1}}| \leq A_r^+}
\]

\[
Z_t = E[Z_\infty | \mathcal{F}_t]
\]

with \(\delta > 0 \). This yields

\[
Z_T = \delta P[S_N = \infty | \mathcal{F}_T].
\]

Again it suffices to consider \(a \in (-1, 1) \). Since \(\|Z\|_{BMO} \leq \delta \) holds, we only have to show that

\[
E[|X_\infty - X_T - Z_\infty + Z_T||X_T = a, M_T] < E[|X_\infty - X_T||X_T = a] = \frac{(a + 1)(2 - a)}{2}
\]

holds for \(a \in [\frac{1}{4}, \frac{3}{4}] \) uniformly in \(M_T \), and then to choose \(\delta \) small enough.
Using again the optional stopping theorem, an easy calculation gives the following table.

<table>
<thead>
<tr>
<th>(r = -1, 0, 1, \ldots)</th>
<th>(X_\infty)</th>
<th>(X_T)</th>
<th>(Z_\infty)</th>
<th>(Z_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1^2)</td>
<td>(r)</td>
<td>(a)</td>
<td>(\delta)</td>
<td>(\delta)</td>
</tr>
<tr>
<td>(A_2^2)</td>
<td>(r)</td>
<td>(a)</td>
<td>(0)</td>
<td>(\frac{a+1}{3})</td>
</tr>
</tbody>
</table>

Putting things together we arrive - after a lot of algebra - at

\[
E[|X_\infty - X_T - Z_\infty + Z_T||X_T = a, M_T|] =
\begin{cases}
\frac{(a+1)/2 - a}{2} + \frac{\delta}{6}(MT(a^2 - 1) + (1 - MT)(-a^2 - a)) & \text{if } 1/4 \leq a \leq 1/2 \\
\frac{(a+1)/2 - a}{2} + \frac{\delta}{6}(a^2 - 1) & \text{if } 1/2 \leq a \leq 3/4,
\end{cases}
\]

which clearly proves our assertion. \(\square \)

5 The case \(H^\infty \)

In this section we introduce a class of processes for which \(\hat{Z} = 0 \) is indeed the best approximation in \(H^\infty \). This class includes also the example of section 4. We start with definitions.

Definition 5.1 Let \(X \) be in \(BMO \). Then we call a stopping time \(T \) proper for \(X \), if

\[P[T(X)_T < (X)_{\infty}] > 0. \]

Definition 5.2 A process \(X \) in \(BMO \) has the property QS (quasi-stationary), if for each proper stopping time \(T \) for \(X \), we can find another proper stopping time \(S \sim T \) P-a.s. for \(X \), s.t. \(S \sim X \) hold. Here \(\sim \) stands for equality in law.

Our next lemma shows that - not very surprisingly - for QS processes the \(BMO \)-norm "does not decline", no matter when the process is started.

Lemma 5.1 Let \(X \) be in \(BMO \) with the property QS. Then for all proper stopping times \(R \) we have

\[||R\hat{X}||_{BMO_2} = ||X||_{BMO_2}. \]

Proof: Let \(U \) be a proper stopping time s.t. \(U \geq R \) P-a.s. and \(U\hat{X}1_{\{U \neq 0\}}/P[\{U \neq 0\}] \sim X \) hold. We get

\[||R\hat{X}||_{BMO_2} = \sup_T E[(R\hat{X}_T^\infty - R\hat{X}_T^2)] \geq E[(X_\infty - X_T^2)] \sup_{T \geq R} E[|X_\infty - X_T|^2] \geq P[T < \infty] \sup_{T \geq R} \frac{E[(X_\infty - X_T)^2]}{P[T < \infty]} = ||X||_{BMO_2}^2. \]

The reverse inequality follows from Lemma 2.1. \(\square \)

Using a result proved by W. Schachermayer in [5], which characterizes the distance of a given martingale to \(H^\infty \) in \(||\cdot||_{BMO_2} \), we get our final result.

Theorem 5.1 Let \(X \) be in \(BMO \) with the property QS. Then we have

\[\inf_{\hat{Z} \in H^\infty} ||X - Z||_{BMO_2} = ||X||_{BMO_2}. \]
Proof: Assuming the contrary, namely

$$\inf_{Z \in H^\infty} \|X - Z\|_{BMO_2} < \|X\|_{BMO_2},$$

yields, by applying Theorem 1.1 of [5], a finite increasing sequence of stopping times

$$0 = T_0 \leq T_1 \leq \ldots \leq T_N \leq T_{N+1} = \infty$$

s.t.

$$||T_n X_{T_{n+1}}||_{BMO_2} < ||X||_{BMO_2} \quad n = 0, \ldots, N$$

(Without loss of generality we may assume that T_N is a proper stopping time for X.) In particular we find

$$||T_n X||_{BMO_2} < ||X||_{BMO_2},$$

which is a contradiction to Lemma 5.1. □

Acknowledgement: Support by “Fonds zur Förderung der wissenschaftlichen Forschung in Österreich” (Project Nr. P11544) is gratefully acknowledged.

References

