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SOME REMARKS ON THE OPTIONAL DECOMPOSITION THEOREM

C. Stricker and J.A. Yan

Summary : Let S be a vector-valued semimartingale and .Z(S) the set of all strictly
positive local martingales Z with Zo == 1 such that ZS is a local martin-
gale. Assume V (resp. U) is a nonnegative process such that for each
Z E Z(S) ZV is a supermartingale (resp. ZU is a local submartin-
gale with E(Z’TU’T)  +00 where Tf denotes the set of
all finite stopping times ). Then V (resp. U) admits a decomposition
V = Vo + ~ ~ S - C (resp. U = Uo + ~ S + A) where C and A are
adapted increasing processes with Co = Ao = 0. The first result is a
slight generalization of the optional decomposition theorem (see [2,4,7])
and the second one is new. As an application to mathematical finance,
if S is interpreted as the discounted price process of the stocks, we show

,Z(S) contains exactly one element iff the market is complete.

1. Introduction and motivations.

Let (H, ,~’, (0t), P) be a usual stochastic basis. For simplicity we assume ~’o is trivial.
Consider a model of a security market which consists of d + 1 assets : one bond

and d stocks. We choose the bond as a numéraire and denote by S = (Sl, ... , Sd)
the discounted price process of the stocks. We fix a time horizon [0, T~ . Let B be

a discounted European contingent claim (i.e. a nonnegative .~’~-measurable r.v.).
Assume that there exists at least one probability measure Q, equivalent to P such
that S is a local martingale under Q. We denote by the set of all such probability
measures Q. Put

(1.1) V := ess sup U  t  T.

If  +oo, then (V) is a supermartingale under each Q E P(S).
When S is a diffusion process, El Karoui and Quenez [2] proved that V admits a
decomposition of the form

(1.2) 0tT,

where § is a vector-valued predictable process, integrable w.r.t. Sand C is an adapted
increasing process with Co = 0. Notice that since Vo + ~ - S is nonnegative, §. S
is also a local martingale under Q E (see Emery [3] and Ansel/Stricker [1]).
The process V is called the value process associated to the problem of hedging the

contingent claim B. Here the financial meaning of the processes § and C is clear : If

the "option-writer" (i.e. the seller of the contingent claim B) invests the initial capital
Vo in the market and uses the hedging strategy ~, he can obtain a cumulative profit
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called the cumulated consumptions C during the time interval [0, T] and replicate the
contigent claim B at time T. Vo is called the "selling price" of the contingent claim B,
because with this price as initial capital one can hedge the contingent claim without
risk. Inspired by El Karoui/Quenez [2], Kramkov [7] showed that a decomposition
of the form (1.2) is valid in a more general situation, i.e. (St) is a locally bounded
process and (V) is a nonnegative process such that for each Q E P(S), {V ) is a Q-
supermartingale. This unpleasant "local boundedness" condition has been removed
in the recent paper of Follmer/Kabanov [4] by means of the "Lagrange Multipliers"
method. The following theorem is the main result of their paper : :

Theorem 1.1. Let S be a vector-valued process defined on {S~, (,~’t), ~’, P). . Denote by
P(S) the set of all probability measures Q N P such that S is a Q-local martingale.
Suppose that P(S) ~ ~ and V is a nonnegative process. Then the following statements
are equivalent :
i) V is a Q-supermartingale for each Q E P(S).
ii) There exist a predictable process ~, integrable w.r.t. S and an adapted increasing
process C with Co = 0 such that V = Vo + 03C6 .S - C and  +~ for each
Q E P(S).

This theorem is an important contribution both to the theory of semimartingales and
to mathematical finance. The first aim of this paper is to weaken the assumption
~(9) ~ 0 in Theorem 1.1 . It turns out that if there exists at least one strictly
positive local martingale Z with Zo = 1 such that ZS is a local martingale (Z is
called a strict martingale density for S), then any nonnegative process V satisfying
the property that ZV is a supermartingale for each strict martingale density Z for
S admits a decomposition of the form (1.2)(see Theorem 2.1 below). When no strict
martingale density for S exists, we give a characterization of those stopping times T
such that ST has a strict martingale density (see Theorem 2.2 below). The second
aim of our paper is to investigate the submartingale case. From the option-buyer’s
point of view the following process

Ut := ess inf o  t  T

should be the value process associated to the problem of hedging the contingent claim
B. Observe that (Ut) is a submartingale under each Q e ~(9). A very natural
question is the following : does U admit a decomposition of the form

(1.3) ~~tT~

where (At) is an adapted increasing process with Ao = 0. It turns out that in the
general setting of Theorem 1.1 a necessary and sufficient condition for a process U
to admit a decomposition of form (1.3) is available. We shall prove this result in the
setting of Theorem 1.1 as well as in our generalized setting (see Theorem 2.3 and 2.4
below). The decomposition (1.3) has the following financial meaning. In contrast to
the selling price Vo, Uo is called the purchase price of the contingent claim B, because
with this price as the initial capital one should save the amount A during the time
interval [0, T] in order to hedge the contingent claim B at time T. . So this price Uo is
favourable to the option buyer.
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As an application of the above two results we give a characterization of the replicability
of a contingent claim which generalizes a previous result of Ansel/Stricker [1] and
Jacka [5] .

2. Main results.

Throughout this paper we consider a stochastic basis P) which satisfies
the usual conditions. We denote by the set of all local martingales. A strictly
positive local martingale Z with Zo = 1 is called a strict martingale density for

a vector-valued process S if ZS E Mloc’ We denote by Z(S) the set of all strict
martingale densities for S, and by P(S) the set of all laws P such that S is a

local martingale under Q. In the sequel we also denote by P(S) the set of density
processes Mt := associated to Q E P(S). For a semimartingale X we
denote by the Doléans-Dade exponential of X, i.e. the unique solution Y of the
stochastic differential equation dY = Y dX and Yo = l. The following three lemmas
that are probably known, are the key for the proof of our main results. For the sake
of completeness we shall give the proofs.

Lemma 2.1. Let V be an optional process, Y a local martingale and T a stopping
time. If is a local supermartingale, then YVT is also a local supermartingale.

Proof. Notice that

YVT = (Y - yT)VT + = + .

Since Y is a local martingale and is a locally bounded predictable process,
is a local martingale. Hence YVT is a local supermartingale.

Lemma 2.2. Let Z and M be two strictly positive uniformly integrable martingales
and T be a stopping time. Assume Z = ZT and MT > 0. Put Z’ := 

Then Z’ is a strictly positive uniformly integrable martingale.

Proof. First of all Z’ is a local martingale because Z = ZT. Since Z’ is positive, it
is a supermartingale. Thus it remains to prove that E(Z~) = We have MT =

= = Thus 1.

Now = = E(ZT) = E(Zo) = 

Lemma 2.3. Let S be a vector-valued process and T, Tl, T2 be stopping times.

i) We have Z(S) C Z(ST).
If Z’ E and Z" E Z(ST2), then Z := belongs to

.

iii) ~ and ~ ~, then ~.

Proof. We only need to prove the lemma for the case when S is a real-valued

process. Since ZST = (Z - ZT)ST + (ZS)T = Z + (ZS)T, we conclude
that C Z(ST). Now we are going to prove the second assertion. We have

(ZS)TIVT2 = (ZS)T2 - (ZS)Tl = 
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+ 1 = + . The last assertion(Z"S)T1T2)+(Z’S)T1 =- (Z’T1^T2 Z"T1^T2 ]T1^T2,T2]
).(Z"S)T2+(Z’S)T1. The last assertion

follows from ii ) and Lemma 2.2 applied to (Z’)Tl and (Z")T2 with T = Ti .

Definition 2.1. A subset ~l of Z(S) is called dense in Z(S) if for each Z E Z(S)
there exists a sequence zn such that bt > 0 Zt -~ Zt a. e.

0, then is dense in Z(S) . Indeed, let Z E Z(S) and (Tn) be an increas-
ing sequence of finite stopping times converging to +00 such that ZTn is a uniformly
integrable martingale. Let Q E P(S), M := and := 

Then by Lemma 2.2 and 2.3 Z~"} is a uniformly integrable martingale which belongs
to P(S). Moreover b’t > 0 Ztnl converges to Zt. . Thus the next theorem is a general-
ization of Theorem 1.1. .

Theorem 2.1. Let S be a vector-valued semimartingale such that Z(S) ~ ~, X a
dense subset of Z(S), T the set of all stopping times and V a nonnegative process .

The following statements are equivalent :
i) For each Z E ?~, ZV is a supermartingale.
ii) For each Z E Z(S), ZV is a supermartingale.
iii) V admits a decomposition of the form :

(2.1) V= Vo+ yS-C,

such that ~ is a predictable process integrable w.r.t. S, Z(~ S) a local martingale
for each Z E .Z(S), C an adapted increasing process, Co = 0 and b’Z E .~(S), bT E
T E(ZzCT)  +oo. .

Moreover, if i), it) or iii) holds, then sup E(ZrCT)  Vo .

Proof. We first prove i) -it) . Let Z E Z(S). Then there exists a sequence zn E ?~
such that dt > 0 Z: --~ Zt a.e.. Since ZnV is a supermartingale, for s  t we have

 According to Fatou’s lemma  i.e. ZV is a

supermartingale.
Now we prove ii) ===~ iii). We take an arbitrary but fixed element M E Z(S) and take
an increasing sequence (Tn) of finite stopping times with Tn --~ +00 such that each
MTn is a uniformly integrable martingale. We shall show that each pair (STn, VTn)
satisfies the assumption of Theorem 1.1. First of all, 0, because MTn E

Now fix an n and let Q E Put X := Then Y E 
Set Y’ := By Lemma 2.3 Y’ E Z(S). Thus Y’V is a supermartingale
under P. Since = we know that is also a supermartingale under
P. According to Lemma 2.1 and taking in account the fact that YVTn is nonnegative
with YovT" = Vo being integrable, is a supermartingale under P. This is

equivalent to saying that VTn is a supermartingale under Q. Therefore we can apply
Theorem 1.1 to get the following decomposition of V : :

VTn = VO + 03C6(n) . STn " 

where ~~"1 is a vector-valued predictable process which is integrable w.r.t. STn and
is an adapted increasing process with = C~n~. Obviously we can assume
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= 0. Put

03C6 := + (03C6(k+1) - 03C6(k)) and C := + (C(k+1) - C(k)).
k=1 k=l

Then we obtain a decomposition of the form (2.1). Remark that for n > k, we have
~(k) , STn = ~(k) So it is easy to see that we have

(~Y = W(n) . sTn

Next we show that for each Z E Z(S), Z(~ ~ S) is a local martingale. Let Z E Z(S).
Take an increasing sequence Tn of finite stopping times with Tn - +00 such that
each ZTn is a uniformly integrable martingale. Now STn is a local martingale under
the law Qn := + ~ - S > 0 and (~ . S)Tn = ~ ~ Therefore (~ . S)Tn
is a Qn local martingale (see Ansel/Stricker [1] Corollaire 3.5). Hence (Z(~ . S))Tn
is a P-local martingale for each Tn and therefore Z(~ ’ S) is a P-local martingale.
Moreover since vo + ~ ’ S is nonnegative, Z(~ ~ S + vo) is also a P-supermartingale.
So sup E(Z’TC’T)  vo. 

’

It remains to prove iii) ===~ i). Let Z E ~(’S’). Since for each stopping time T
E(ZTC?)  +oo, the process ZC is locally integrable and ZC = C- . Z + Z ~ C is a

submartingale. Therefore the assumption that Z(~ ~ S) is a P local martingale implies
ZV is a P-supermartingale.

Next we give a straightforward application of the previous theorem to mathematical
finance.

Corollary 2.1. Let S be a vector-valued process such that .~(s) ~ ~. Then Z(S)
contains only one element there exists Z E Z(S) such that for any finite stopping
time R, each bounded FR-measurable random variable 03BE admits a representation of
the form

(2.2) ~ = x + 

w~ere ~ is a vector-valued predictable process which is integrable w.r.t Sand 
is a uniformly integrable martingale.

Proof. Assume Z(S) contains only one element Z. We can and will assume ç is
nonnegative. Put

v := > 0.

Then ZV is a nonnegative martingale. By Theorem 2.1 V admits a decomposition of
the form (2.1) with C = 0 :

~ = vo + (~ . S)t.
Since VR = ~ we get (2.2).
The converse is straightforward. Let Z’ be another strict martingale density for Sand
T a stopping time such that ZT and (Z’)T are uniformly integrable martingales. Then
it is well-known (see for instance Corollary 11.4 page 340 of [6]) that (2.2) implies
Z~ = (Z’)T. Therefore we get Z = Z’ and the proof is completed.
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Now, given a RCLL adapted vector-valued process S, we will investigate those stop-
ping times R for which ,~(SR) ~ 0. Recall that a subset B of 1R+ x H is said of type
Q0, ~ (~ if there exists a nonnegative r.v. R such that each section B(w) is not empty
and equal to [0, or [0, R(w)). According to Lemma 5.2 of Jacod [6], a set B of
type j[0, ~~ is predictable iif there exists an increasing sequence (Tn) of stopping times
such that Tn -~ R and B = [0, Tn].

Theorem 2.2. Let S be a vector-valued RCLL adapted process. Then there exists
a unique (up to an evanescent set) predictable set B of type Q0, ~~~ such that for each
stopping time T, Q0, TD C B iff Z(S) ~ Ø. Moreover there ezists an increasing
sequence of stopping times (Tn) such that ~ ~ and B = UnQO, TnD.

Proof. Denote by T the set of all stopping times. Put C := {T E T : : ,~(ST ) ~ 0}.
Then T - 0 belongs to C. Set R := ess sup C and Ci := {T E C : T = 0 or P(T =
R) > 0~. By lemma 2.3, if Tl and T2 belong to C, then Ti V T2 E C. Consequently,
there exists an increasing sequence (Rn) of elements of C such that R’z i R. If Ti and
T2 belong to Ci , it is easy to check that Tl V T2 E Ci. Hence there exists an increasing
sequence (Un) of elements of Ci such that ess sup Cl. We put

Tn := Rn V Un and B := UnQo, Tn~.
Then B is predictable. It is obvious that

Now we are going to show the converse. Assume T is a stopping time such that
Q0, T~ C B. Put

Rn := 

It is easy to see that Rn ~ +00 a.s. and Rn AT = Tn A T. Let E Z(STn). We
can assume = V~’~l. Now if we successively apply Lemma 2.3 to Z~’~} and

we can construct a sequence zen) E Z(STn) such that = Put
Zt := fort E [0, Tn]. Since (ZT )Rn = = and ((ZS)T)Rn = 
are local martingales, ZT and (ZS)T are local martingales too. Hence and
the proof of Theorem 2.2 is complete.

The next theorem is a counterpart of Theorem 1.1 for the local submartingale case.

Theorem 2.3. Let S be a vector-valued semimartingale such that P(S) ~ ~ and U
be a nonnegative process. The following statements are equivalent :
i) U admits a decomposition of the form

(2.3) U=Uo+ yS’+A,

where ~ is a predictable process, integrable w.r.t. S, such that ~~S is a local martingale
under each Q E P(S), and A is an adapted increasing process with Ao = 0 and

 

ii) U is a local submartingale under each law Q E P(S) and sup 

+00 where the set of all finite stopping times. 
~f
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Proof. We first prove i) ===~ ii). Since 9 . S > -A and  +oo, ~ ~ S is a

supermartingale under each Q E P(S) and sup E~((~’  Therefore
TETI

we get sup EQ(UT)  +oo.
~f

Now we prove ii) ===~ i). Denote by 7~~ the set of all stopping times taking values in
[t, +oo). Put 

V := ess sup 

Kramkov showed in [7] (Proposition 4.3) that (V ) is a Q-supermartingale for each

Q E P(S). According to Theorem 1.1 V admits a decomposition of the form (2.1)

V 

Put W := Vo + ~~1) ~ S - U = V - U+ C~l). Then under each Q E P(S) W is a nonneg-
ative supermartingale. Thus, according to Theorem 1.1 , W admits a decomposition
of the form (2.1) 

W = Wo + ~c2) . s - 

Put

~I, := ~cl) - ~c2) ~ A := Cr ~2).

We get a decomposition of the form (2.3). Since Aoo = C(2), 
+00.

The following lemma is a slight generalization of a result due to Kramkov (see [7]
Proposition 4.3).

Lemma 2.4. Let S be a vector-valued process with Z(S) ~ ~. Let f := be a

nonnegative adapted RCLL process such that

(~) a := sup E(ZT fT)  +oo.

Then there exists an adapted RCLL process V such that V dominates f and for each

Z E Z (S) ZV is a supermartingale.

Proof. First of all, we are going to show that for any stopping time T such that

~(ST ) ~ ~ we have 
sup  +oo.

In fact, let Q E p(ST) and M be the associated density process w.r.t. P. For T E Tf
MTA’T E By Lemma 2.3 there exists a Z E Z(S) such that = 

Thus we have

= = E(MT^fT^) = ~ a.

Now let Tn E Tf be such that Tn i +00 and for each n 0. By Proposition
4.3 in [7], for each n there exists an adapted RCLL process such that

~ = ess sup .
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V(’~) is a Q supermartingale for each Q E p(STn). We claim that this latter prop-
erty implies that for each Z E ZV(’~) is a supermartingale. In fact, take an
increasing sequence (Tm) of finite stopping times such that each is a uniformly
integrable martingale. Now fix m. According to Lemma 2.2, we can construct a
uniformly integrable martingale M such that M E and MTm = Since

is a supermartingale, = is also a supermartingale. Con-
sequently, ZV(’~) is a supermartingale. In particular for each Z E Z(S) ZV(n) is a
supermartingale because Z(S) C Moreover, we have for each T E Tf

~ = sup ~ a.

Put V := supn v("). By Lemma 2.2 and 2.3, for any Q E we can construct

a Q’ E such that = Q|FTn. Therefore V(n)t ~ Vt and is a su-

permartingale. Now we are going to prove that V is a RCLL process. Let Tn E T f ,
Tn l T. We have lim = lim lim = lim lim 

= lim = Here increases both in m and in n, so the

interchange of the limits is allowed. Since ZV is an optional process, we conclude that
ZV is a RCLL supermartingale. Thus V is an adapted RCLL process. Obviously V
dominates f .

Remark 1. If ~(9) ~ 0 and b :=  +oo, then (*) holds. In
fact, let Z E Z(S) and T E T f Take an increasing sequence of finite stopping times
Tn converging to +00 such that ZTn is a uniformly integrable martingale. By Lemma
2.2 we can construct a uniformly integrable martingale M such that M E P(S) and

Thus we have

- E(MTn^fTn^) - C SuP ’

By Fatou’s lemma, we get E(ZT fT)  b. Thus, Lemma 2.4 extends Proposition 4.3 of
[7].

Remark 2. It is easy to prove that the process V constructed in the proof of Lemma
2.4 is the smallest process dominating f such that ZV is a supermartingale for each
Z E Z(S) and, since UnP(STn) is dense in ~(9), we have

V = ess sup 

The next theorem is a counterpart of Theorem 2.1 for the local submartingale case.

Theorem 2.4. Let S be a vector-valued process such that Z(S) ~ ~ and U be a
nonnegative process. The following statements are equivalent : :
i) U admits a decomposition of the form :

(2.4), , 

where 03C8 is a predictable process, integrable w.r.t. S, such that Z(03C8 . S) is a local

martingale for each Z E Z(S), A is an adapted increasing process with Ao = 0 and
sup E(ZTAT)  +00.

.
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ii) For each Z E Z(S), ZU is a local submartingale and sup E(ZTUT)  +oo.

iii) For each Z E Z(S), ZU is a local submartingale and there exists a process V
dominating U such that ZV is a supermartingale for each Z E Z(S) .

Proof. First we are going to prove i) ===~ ii). Let Z E Z(S), T E ?~f and (Tn) be
an increasing sequence of finite stopping times converging to +00 such that ZTn and
[Z(~ ’ are uniformly integrable martingales. By (2.4) we have

E(Z^TnU^Tn) = Uo + E(Z^TnA^Tn) _ Uo + sup E(zTAT).

Let n --~ +00 we get E(ZTUT)  Uo + E(ZTAT)  +oo.

ii) ==~ iii) is a consequence of Lemma 2.4. 
Next we are going to prove iii) ===~ i). Assume iii) holds. By Theorem 2.1 V admits
a decomposition of the form

Put W := = V-U+C{1). Then ZW is a nonnegative supermartingale.
Again by Theorem 2.1 W admits a decomposition of the form

W + ~{2) . 5’ - C(2).

By putting 9 := ~(11 - ~{2), A := C(2), we get (2.4). It remains to show that

sup E(ZrAr)  +00. Since V dominates U, we have .

sup E(zTU?)  sup E(zTvT)  vo  +oo
ZEZ(S),TE?f 

By a same argument as in the proof of i) ===~ ii) we conclude that

sup  Uo.

3. Application to Mathematical Finance.

Now we fix a time horizon T. By stopping at T, all results of section 2 are applicable
to the present case. As mentioned in section 1, the vector-valued semimartingale S
can be interpreted as the discounted price process of stocks in a security market. We
suppose that ,Z(S) ~ 0, but we don’t assume 0. In general, the market is
incomplete. So there exist contingent claims which are not replicable. Here, by a
contingent claim, we mean a nonnegative FT-random variable. The contingent claim
B is said to be replicable if there exist x > 0, a vector-valued predictable process
~ integrable w.r.t. S and Z E Z (S) such that Z(x + ~ ’ ~ S) is a martingale and
B = x + (~ . S)T. In that case § . S is uniquely defined. In the sequel we consider
only those contingent claims B which satisfy the following condition : :

sup E(ZTB)  oo.
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Such a contingent claim will be called tradable. Of’ course, each bounded contingent
claim is. tradable. If B is a tradable claim, we put :

(3.1) Y := ess sup 0  t  T.

(3.2) Ut := ess inf o  t  T.

The following theorem, an immediate consequence of Theorem 2.1 and 2.4, shows that
(V) and (Ut) can be interpreted as the value processes associated to the problem of
hedging the contingent claim B for option-writer and option-buyer respectively.

Theorem 3.1. Assume .Z(s) ~ ~. Then (V ) and (Ut) admit the following decompo-
sitions :

(3.3) V = vo + (~ S)t - Ct, o  t  T,

(3.4) Ut = Uo + (~ ~ S’)t + At, ~ ~ t  T, 

where ~ and ~ are predictable vector-valued processes, integrable w.r.t. S and C and
A are adapted, increasing processes with Co = Ao = 0, such that for each Z E Z(S),
Z(~ S) and Z(~ ~ s) are local martingales.

If ~(s) ~ ~, it is easy to see that we have

(3.3)’ V := ess sup ~ ~ t  T,

(3.4)’ Ut := ess inf o  t  T.

In this case, Ansel/Stricker ~1~ proved that B is replicable iff there exists a Q E P( S)
such that Uo = EQ(B). The following theorem extends this result to the general case.

Theorem 3.2. Assume ~. Then the following statements are equivalent: :
i~ B is replicable.
ii) 3Z’ E Z(S) such that = E(ZTB).
iii) 3Z’ E Z (S) such that Z’V is a martingale.

Proof. i) ~ ii). Asume B = x + (~ S)T and there is a Z’ E Z(S) such that
Z’(x + ~ S) is a martingale. Since x + ~ S is nonnegative, by Corollary 3.5 in
Ansel/Stricker ~1~, VZ E Z(S) Z(x + ~ ~ s) is a nonnegative local martingale. Thus,
it is a supermartingale and we have E(ZTB)  E(Zox) = x = 
ii) ~ iii). Assume ii) holds. Since Z’V is a supermartingale and E(ZTVT) =
EZTB) = supZ~z(S) E(ZTB) = Vo = E(ZTVT), Z’V is a martingale.
iii) ~ i). Assume Z’V is a martigale. By (3.3) we must have Ct = Co = 0. So i)
holds.
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Note added in proofs : When this work was completed, we learned that Föllmer
and Kabanov modified their proof of Theorem 1.1 in order to remove the assumption
that V is nonnegative. So Theorem 1.1 can also be stated for submartingales. Recently
Delbaen and Schachermayer provided the proof of this general result using completely
different ideas.


