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Principle of Superposition and Interference
of Diffusion Processes1

Masao NAGASAWA

Institute fur Angewandte Mathematik
Universitat Zurich

Ramistrasse 74, CH-8001 Zurich
Switzerland

1. Superposition Principle in Quantum Mechanics

Let yk be arbitrary wave functions, then

(1.1) 03C8 =03A3 03B1k03C8k

defines a new wave function. This is the so-called superposition principle of
states in quantum mechanics. It is nothing but the linearity of the space of
wave functions. On the other hand it is claimed in quantum theory that

(1.2) |03C8|2 = 03C803C8

is a probability distribution density. This gives no problem to probabilists.
However, if formula (1.2) is combined with the superposition principle (1.1),
then it turns out to be a serious (almost unsolvable) problem in probability
theory.

To make things clear let us consider the simplest case of two wave functions

(1.3) + y~2,

where "we neglect "normalization" for simplicity. Then

(1.4) = + |03C82|2 + 

The real part of cross terms is called "interference" of the wave
functions y~l and ~r2. Probabilists have found no mathematical structure in

probability theory providing such, and hence this has been a long standing open
problem in probability theory since 1926.
1 Lecture given at the third European Symposium on Analysis and Probability held at the
Henri Poincaré Institut on Jan. 6,1992
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If a probabilist were brave enough, he could have done the following:

(i) He gives nice names to a linear space of real valued functions and

defines a kind of its "dual space" of functions ~;

(ii) claims

(1.5) 

is a probability distribution density; and

(iii) proposes to use real valued functions ~ and $ instead of complex valued
functions 03C8 and 03C8. If do so, formula (1.4) turns out to be

(1.6) (03C61 + 03C62 )(~ + 2 ) =03C611 + 03C622 + (03C612 + 03C621).

Then, finally:

(iv) He calls the term + in (1.6) "interference" or more probably
"correlation" of and 

Then probabilists could have been liberated from uneasy feeling against
quantum theory.

2. A Diffusion Theory

Let us consider a diffusion equation

(2.1) ~u ~t(t,x) + Lu(t,x) = 0,

on [a, b]xRd, -oo  a  b  oo, where

(2.2) L = 1 20394 + b(t,x).~

(2.3) 0394 = 1 03C32(t,x) ~ ~xi(03C32(t,x)03C3T03C3ij(t,x)~ ~xj)

with which is positive definite diffusion coefficient, and a2(t, x)
= b(t, x) is a drift vector satisfying a gauge condition div b = o.

We assume the existence of space-time diffusion processes { (t, Xr): 
(s, x) E [a, b]xRd} determined by the diffusion equation given in (2.1 ),
requiring necessary conditions on the coefficients. The existence of P(s,x) is not
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of our interest. Our main concern will be on diffusion processes with
additional singular drift, the existence of which is not at all evident.

Let us define, in terms of the parabolic differential operator L,

(2.4) c(t,x) = -L03C6 03C6(t,x),

on D = { (t, x): 03C6(t,x) ~ 0 } for an arbitrary real valued function2 x), and
call the function c(t,x) the creation and killing induced by the function
~(t, x). The function may take negative values, but for simplicity we
assume it is non-negative.

As the naming itself indicates already, we consider a diffusion equation

(2.5) Lp(t,x) + c(t,x)p(t,x) = 0,

with the creation and killing c(t, x), which is singular at the zero set of ,

in general, as (2.4) shows. Therefore, the existence of the fundamental
solution p(s, x;t, y) of diffusion equation (2.5) is a non-trivial problem.
Actually we can solve the existence problem applying a transformation in terms
of a multiplicative functional, as will be seen.

Since the function ~ is p-harmonic, namely, it satisfies

(2.6) + = 0 ,

(this is trivial, because of definition (2.4)), if we define

(2.7) q(s,x;t,y) = y) ,

on a subset D of [a, 

(2.8) D = { (s, x): 0 } , ,

then q(s, x;t, y) is a transition probability density on the subset D.

Taking another arbitrary non-negative function ~(a, x) such that

(2.9) x)~(a, x) =1,3

we consider a diffusion process { (t, X~), Q } on D with the initial distribution
density x)~(a, x) and the transition probability density q(s, x;t, y).
2 We consider sufficiently smooth bounded functions
3 dx denotes the volume element
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To construct such diffusion processes we apply the following theorem on a
transformation of singular drift. Then, we find that the diffusion process
(Xi, Q ) constructed has an additional drift term

(2, 1 0) a(t, x) = x) V log ~§l(t, x) ,

which is singular at the boundary 8D.

Theorem 2,I. (Nagasawa (1989)) Require

(2. I I ) P(sj) C (~, ’ir) d~) I (b  T, ) ]  °°.

Then, (I) a multiplicative functional Nj defined by

(2.12) N1s = exp(-tsL03C6 03C6(r,Xr)dr)

satisfies

(2, 1 3) Ps,>[Nj] = I , for V (s, x) e D.

(ii) The transformed diffusion process Qs,x> = NiP s, x>, V (s, x) e D has
an additional drift term a(t,x) = 03C3T03C3~log 03C6(t, x) .

(iii) The space-time diffusion process ( (t, Xi), Qs,>; (s, x) e D ) does not
hit the zero set N of g§.4

Remark. The diffusion process constructed in the above theorem

corresponds to the diffusion equation

(2, 14) Bq(t,x) = 0, in D,

where B is a time-dependent parabolic differential operator

~~° ~ ~~ ~ ~~~~ )t ~ ~/~ ~ ~ ~~~’ ~~ ~ 
The drift coefficient b(t,x) is regular, while a(t,x) is so singular that the
Novikov or Kazamaki condition cannot be applied. Thus we need a theorem

such as Theorem 2.I . For related subject cf, references in Nagasawa (89, 90,
Monograph).

4 Cf, also Nagasawa (1990), Aebi-Nagasawa (1992) for another methods based on
variational principle and large deviation



5

In terms of the diffusion process { (t, Xt), (s, x) ED} given in Theorem
2.1 we put

(2.16) Q f ’ l = 

The finite dimensional distributions of the diffusion process Q } is given
by

(2.17) 

= dx0a(x0)03C6a(x0 )1 03C6a(x0)p(a,x0;t1,x1)03C6t1(x1)dx11 03C6t1(x1)p(t1,x1;t2,x2)
03C6t2(x2)dx2...1 03C6tn-1p(tn-1,xn-1); b,xn)03C6b(xn)dxnf(x0,x1, ... ,xn),

where we denote = (a,x) and = Then, it is clear that
formula (2.17) turns out to be

(2.18) 

= dx0(a,x0)p(a,x0;t1, x1)dx1p(t1,x1;t2,x2)dx2 ...

... 

... , xn)~

where a  ti  ...   b.

Adopting formula (2.18) instead of (2.17) was one of genius ideas of
Schrodinger (1931).

We will call the probability measure given on the right-hand side of formula
(1.18) Schrodinger’s representation (or p-representation) with an
entrance-exit law of the diffusion process {X~, Q} , and denote it
symbolically as

(2.19) 

while we denote the probability measure given on the right-hand side of
formula (2.17) and its time-reversal as and « q~b~b ], respectively,
and call them Kolmogorov’s representation (q-representation) and
time reversed q-representation.

Therefore, we have



6

Theorem 2.2.5 A diffusion process Q has three representations

(2.20) Q = 

_ ]

_ 
,

where

(2.21) q(s,x;t,y) _ ,

with

(2.22) _ ~(a, z;t, x).

Moreover,

(2.23) Q[f(Xt)] = 

Namely, the distribution density of {Xt, Q } is given by

(2.24) _ 

Formula (2.24) is exactly (1.5)! We will call (2.24) Schrodinger’s
factorization of the distribution density of the diffusion process {X~, Q ) .

The q-representation belongs to the real world, since it describes the real
observable evolution of the distribution density of a diffusion process. It
should be remarked that the p-representation, in contrast, describes an
evolution in an "fictitious" world, because p does not concern the probability
distribution of the diffusion process directly, but it describes the evolution of
an entrance-exit law { ~, ~ } . . This is exactly the real-valued counterpart of the
relation between wave functions { ~r, y~} and the product in quantum theory.

We can identify the two distribution densities

(2.25) = 
.

This identification of the products is enough to construct a diffusion process
(see the following corollaries), but in addition we need to establish the
equivalence of the Schrodinger equation and a pair of diffusion equations. This
solves Schrodinger’s conjecture, which will be explained in the next section.

We formulate simple corollaries of Theorem 2.1. .

5 Cf. Nagasawa (1961,1964, monograph) for time reversal and the duality of
diffusion processes
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Corollary 2.1. Let ,ut,t E [a,b], be a flow of non-negative distribution
densities and set

_ 

(2.26)
~~(x) _  J.lI(X) e - 

Let E (or H1 ~2(D )), where D = { (t, x): ~ 0 ) and assume
the integrability condition (2.11) for the creation and killing c 
induced by Then, there exist a space-time diffusion process

D ) with an additional drift coefficient a (t, x) =

03C3T03C3~log 03C6t(x).

The same arguments applied to ~r with c = - implies the existence
of a space-time diffusion process (in reversed time) { (s, X s), Q(lx);
(t, x) E D } with an additional drift term x) = 03C3T03C3~log

As is seen in Corollary 2.1, a flow ,ul , t E [a,b] does not determine a
diffusion process uniquely, since we can choose a function S(t, x) freely. To

specify a distribution of the process { X r, (resp. { X l, we need an

additional requirement, as will be explained in the following corollaries.

Corollary 2.2. Keep the assumptions of Corollary 2.1. Then:
(i) The distribution density of the process {(t,Xr), where

(2.27) _ 
coincide with the given flow ~~ , t E [a,b], if and only if, with

(2.28) 
~R ~t 

+ 1 2 0394S + (03C3~S).(03C3~R) + b.~R = 0,

where R = 1 2log t .

(ii) The diffusion processes with the additional drift coefficients a =

03C3T03C3 Vlog and a = 03C3T03C3~log t, respectively, are time reversal of each
other (in duality with respect to the given ~ut), namely, Qua is equal to

[,uQ q » _ ,

in the q-representation, which can be represented also in the p-representation
as
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Proof. The two diffusion processes are in duality with respect to if
and only if Fokker-Planck’s equations

~7(V~{ + ~(r~))~} = 0,

(B)~ = 

hold, and hence after subtracting one from another we get (2.28).

Corollary 2.3. Keep the assumptions of Corollary 2.1. If the given
flow e [a,b], satisfies the equation = 0, then the
distribution density of the process where Q a is defined in
(2.27), coincides with the 

Proof. can be determined through a(t, x) = 03C3T03C3~log 03C6t(x) (and
hence S(t,x) by the first equation of (2.26)), where we assume a(t,x) is given.

Remark. A typical example of a flow is given by /~ = where ~ is a
normalized wave function.

3. Schrödinger’s conjecture

Based on formula (2.25) Schrödinger (1931, 32) was convinced that diffusion
theory must provide better understanding of quantum mechanics.

Let us call this Schrödinger’s conjecture, more precisely,

Schrödinger’s conjecture: Quantum mechanics is a diffusion theory.

His conjecture was shown to be correct, because we can prove the following
(cf. Nagasawa (1989, 91, monograph)):

We assume a gauge condition

(3.1) 

Theorem 3.1. . Let and I (t, x) be solutions of a diffusion
equation and its equation

~03C6 ~t + 1 2039403C6 + b(t,x).~03C6 + c(t,x)03C6 = 0,

(3.2) 
- ~- + ~~ - + = 0,



9

respectively, and on { (t, x): ~(t, x) > 0 ) set

(3.3) R = 1 2log 03C6 and S = .

2 2 g
Define a complex valued function by

(3.4) x) = eR(r,x) + is(r,x).

Then, the function 03C8 is a solution of the Schrödinger equation

( ) ~ ~ ~~

with a potential function

(3.6) V(t, x) _ - c(t,x) 

ConverseIy, let 03C8 be a solution of the Schrödinger equation (3.5) of the
form

(3.7) x) = + is(r,x).

Define a pair {~(t,x), ~(t,x)} of real valued functions by

(3.8) ~(t, x) = eR(r,x) + 

(3.9) ~(t,x) = S(t,x).

Then, the functions ~ and ~ are solutions of diffusion equations in (3.2),
where the creation and killing c(t, x) is given by

(3.10) c(t,x) _ -V(t,x) - 2aS/at(t,x) - 2b.VS(t,x).

Therefore, diffusion and Schrödinger equations are equivalent.6

We must aware of the fact that if the Schrödinger equation is linear, the
corresponding diffusion equation is non-linear, and vice versa.7 Since we
know now Schrödinger’s conjecture is correct, we we can also adopt a pair
{ ~, ~ } of real valued functions instead of a pair ~} of complex valuedfunctions.

6 Notice that no "mechanics" is necessary in any form for the equivalence. In other words
we need no "quantization" for Schrödinger equation. Cf. Nagasawa (1989, 91, monograph)~ Cf. Nagasawa (monograph) for the non-linearity appearing here and in (3.5) and (3.9)
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4. Principle of Superposition of Diffusion Processes

be Schrodin g er’s factorization of diffusion processes =

1, 2, .... For ak, ~ik > 0 we set

(4.1 ) ~t = ~, ,

k k

where

(4.2) 1 = ~ akf3j
k, j

so that

=1.

If is Schrodinger’s factorization of a diffusion process Q, then we call the
process Q the superposition of the diffusion processes { Q ~k~: k = 1, 2,
~ ~ ~ } . It is clear that the claim in Section 1 on "interference" turns out to be
correct for the superposition of diffusion processes defined above.

As an example let us consider an inverse problem; namely, we decompose a
diffusion process Q into, say, two diffusion processes. We ignore, for
simplicity, normalization. We decompose entrance and exit laws and 03C6b as

a = (1)a + (2)a
(4.3)

’ ~b 1, + ~b >>
and consider diffusion processes Q (1) and Q (2) with the p(i)-representation

C 4.4 ) Q ~‘~ = p t‘~> p ‘~ i =1,2,

where denotes a transition density. If Q is the superposition of and

Q (2), then, for Vt E [a, b],

(1)ap(1)(a, t) +(2)ap(2)(a,t) = ap(a, t),
(4.5)

b)~b~~ +p~2~(t~ b)~b2~ = p~t~ 
where notations are self-explanatory. This is the requirement on i =1,2,
and p for Q to be the superposition of Q ~l~ and Q ~2~.
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If we assume p = = p~2), then the system of equations in (4.5) reduces to
the system of equations in (4.3), and hence we can formulate

Proposition 4.1. Let p = = p~2). A diffusion process Q can be
decomposed into two diffusion processes Qtl) and Q~2) with ~a and ~b
given in (4.3), if (i)a = (i)a(i)a and (i)b = (i)b(i)b, i =1, 2, are admissible to

p.g The two processes and Q{2~ interfere of each other with the

correlation 
1) ~2) + 

2~ 
~r ~1) (cf. ( 1.6 . ))

This corresponds to the so-called "two slits problem" in quantum mechanics.

More generally we have:

Theorem 4.1. (Superposition Principle) Let {Xt, Q ~k){, k =1, 2, ...,

Q _ [ ~a ^ ~k~ »« p ~b ], be diffusion processes with Schrodinger’s
representation.

Define

(4.6) l = k) 
and t - ~ ~ .

k k

with ax, ~3k >_ 0 such that

(4.7) 1= 03A3 03B1k03B2j.
k, j

Consider a flow = of probability distribution densities and determine
b(t,x) with

(4.8) ~R ~t + 1 20394S + (03C3~S).(03C3~R) + .~R = 0,

where R and S = 1 2log t03C6t. Let be a parabolic differential
operator defined in (2.2) with this b(t,x) in place of b(t,x), and assume the
integrability condition (2.11) with c(t,x) defined in (2.4) with L in place of
L.9 Then there exists a diffusion process Q with the p-representation :

(4.9) Q = [ ak ak) p»«p ~ ]~
k k

$ For the admissibility see Aebi-Nagasawa (1992), Nagasawa (Monograph)
9 We can assume the drift coefficient b is good enough so that we can have a diffusion
process corresponding to the parabolic operator L
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which is the superposition of Q~k~; namely, it holds that for a bounded
measurable f, and d t E [a, b]

(4.10) = ~ f 
where

~t ~’) t 
(4.11 )

= p(t, y ;b, 
The cross terms in (4.10) represent "interference" of diffusion processes

Q ,

Proof. ~We consider the flow = and the parabolic differential
operator L with b(t, x), which is determined by (4.8), and require the
integrability condition (2.11) with this Then, we can apply corollary
2.2, which claims the existence of a space-time diffusion process { (t, X,), Q~ }
whose distribution density coincides with the = and moreover the
process has the p-representation (4.9).

5. Complex or Real Superposition

Because of the non-linear dependence

(5.1) c(t, x) + V(t, x) = - 2aS/at(t,x) - 2b.VS(t, x),

if we assume the Schrodinger equation is linear with a given potential V(t, x),
then the corresponding diffusion equation turns out to be non-linear.
Therefore, it is not reasonable to apply the real-valued superposition in terms
of and hence we should apply the complex-valued superposition: namely,
defining wave functions yi in terms of Ri and S of 03C6i (cf. (3.4)), we apply
superposition of the wave functions.

In the simplest case of (1.3), we get the interference

(5.2) l jl2) = 2eRl + R2 COS (S1- S2).

On the other hand, if a rate of creation and killing c(t, x) is given, then the
corresponding Schrodinger equation turns out to be non-linear. Therefore, it
is reasonable to apply real-valued superposition, namely, defining ~~ in terms
of Ri and Si (cf. (3.8)), we apply superposition of In the simplest case of
(1.6) we get the interference
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(5.3) 03C61 2 + 03C621 = 2eR1 + R2 cosh (S1 - S2).

Remark. We have assumed 03C6(t,x) and (t,x) are non-negative for

simplicity. However, since the space-time diffusion process { (t, Xl), Q } does
not cross over the zero set of the probability distribution density x) =

(ergodic decomposition occurs), even though functions ~(t, x) and
~(t, x) take negative values, the distribution density is always non-
negative. Therefore, and can be real-valued in general. This

consideration applies also to equation (5.3). We have assumed and ~~, i =
1, 2, are non-negative in (5.3). However, if they take negative values too, the
interference in (5.3) turns out to be

(5.4) + R2 cosh (S1- S2),

where K(t, x) = 0 or l, which may vary only on the zero set of the function
2eR1 + R2 cosh (S1- SZ), because of the ergodic decomposition of the space-time
state space by the zero set, cf. Nagasawa (1989, 91, Monograph).

The non-linear dependence appeared in (5.1) and inaccessibility of the
diffusion process {X~, Q } to the zero set of its distribution density indicate that
it is necessary to find out a statistical mechanical structure behind the
Schrodinger equation. For this see Nagasawa (1980, 90, monograph), Aebi-
Nagasawa (1992).

Based on the superposition principle in quantum theory it has been claimed
often that quantum theory is the third way of describing natural laws besides
deterministic and stochastic ways, since deterministic theory and probability
theory do not provide such a mathematical structure. We have shown that this
claim was false, and moreover that quantum theory is an application of
diffusion theory which provide the Schrödinger equation naturally without
"quantization". Therefore, we can now fully rely on the theory of diffusion
processes, even when we consider quantum theory. As many probabilists
actually felt, there are only two mathematical ways describing natural laws:
Deterministic mathematics and stochastic mathematics; more precisely, classical
mathematics and the theory of probability and stochastic processes. There is no
"third mathematics" at the moment.
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