D. P. van der Vecht

Ultimateness and the Azéma-Yor stopping time

Séminaire de probabilités (Strasbourg), tome 20 (1986), p. 375-378

<http://www.numdam.org/item?id=SPS_1986__20__375_0>
The purpose of this note is to give a correct proof of a result of Meilijson [3,p394], which was originally based on an identity proved wrong by Neil Falkner (theorem 2). Our proof uses a special property of the Azéma-Yor stopping time (theorem 1 and lemma 1).

Let \((B_t)_{t \geq 0} \) denote standard Brownian Motion (started at zero) and for any stopping time \(\tau \) define
\[
M_\tau := \sup_{0 \leq t \leq \tau} B_t.
\]
A stopping time \(\tau \) is called standard, if whenever \(\sigma_1 \) and \(\sigma_2 \) are stopping times with \(\sigma_1 \leq \sigma_2 \leq \tau \), then
\[
E|B_{\sigma_1}| < \infty, \quad i=1,2, \text{ and}
E|B_{\sigma_2} - x| \leq E|B_{\sigma_1} - x| \quad \text{for all } x \in \mathbb{R}.
\]
(As N. Falkner [2,p.386] showed, a stopping time \(\tau \) is standard if and only if the process \((B_t)_{t \leq \tau} \) is uniformly integrable.)

Let \(X \) be a random variable with \(EX = 0 \) and define the function \(g_X \) on \(\mathbb{R} \) by
\[
g_X(x) := \begin{cases}
E(X|X \geq x) & \text{if } P(X \geq x) > 0, \\
x & \text{otherwise}.
\end{cases}
\]
Azéma and Yor [1,p.95,p.625] showed that the stopping time \(T \) defined by
\[
T := \inf\{t: g_X(B_t)\}
\]
embeds (the distribution of) \(X \), i.e. \(B_T \overset{D}{=} X \), and is standard. We will refer to it as the A-Y stopping time (embedding \(X \) in \((B_t) \)). It is also known that for any standard stopping time \(\tau \), that embeds \(X \) in \((B_t) \),
\[
P(M_\tau \geq g_X(x)) \leq P(M_T \geq g_X(x)) = P(B_T \geq x) = P(X \geq x)
\]
for \(x \in \mathbb{R} \).
For the inequality we refer to Azéma and Yor [1,p.632].
The first equality is easily seen from the definition of \(T \), while the second holds, because \(T \) embeds \(X \).

* I. Meilijson communicated this to me by letter.
Theorem 1.

Of all standard stopping times τ that embed X, the $A\text{-}Y$ stopping time T is essentially* the only one with

\[(2) \quad P(M_{\tau} \geq g(x)) = P(X \geq x), \quad x \in \mathbb{R}.\]

A standard stopping time τ is called ultimate, whenever Y is a random variable with $E|Y-X| \leq E|B_{\tau}-x|$ for all $x \in \mathbb{R}$, then there exists a stopping time $\sigma \leq \tau$, that embeds Y.

Theorem 2. (I. Meilijson [3, p.394])

Assume τ is a standard stopping time embedding X. If τ is ultimate, then there are $a \leq 0 \leq b$ with $P(X \in [a,b]) = 1$. \[\Box\]

Proof of Theorem 1.

We write g for g_X.

Let τ be a standard stopping time embedding X such that (2) holds.

Define the stopping time H_x by $H_x := \inf\{t: B_{\tau_t} \geq g(x)\}$ and put $\tau_x := \tau \wedge H_x$. Then \[
\{M_{\tau} \geq g(x)\} = \{H_x \leq \tau\}.
\]

For $z \leq x$

\[
E|B_{\tau_t} - z| \geq E|B_{\tau_x} - z| =
(g(x) - z)P(H_x \leq \tau) + E|B_{\tau} - z| \mathbb{1}_{\{\tau < H_x\}} =
E(X - z) \mathbb{1}_{\{X \geq x\}} + E|B_{\tau} - z| \mathbb{1}_{\{\tau < H_x\}} =
E|B_{\tau} - z| + E|B_{\tau} - z| (\mathbb{1}_{\{B_{\tau} \geq x, \tau < H_x\}} - \mathbb{1}_{\{B_{\tau} < x, \tau \geq H_x\}}).
\]

So

\[(3) \quad E|B_{\tau} - z| \mathbb{1}_{\{B_{\tau} \geq x, \tau < H_x\}} \leq E|B_{\tau} - z| \mathbb{1}_{\{B_{\tau} < x, \tau \geq H_x\}}, \quad z \leq x.
\]

Now using (2)

\[
P(B_{\tau} \geq x, \tau < H_x) =
P(B_{\tau} \geq x) - P(B_{\tau} \geq x, \tau \geq H_x) =
P(X \geq x) - P(\tau \geq H_x) + P(B_{\tau} < x, \tau \geq H_x) =
P(B_{\tau} < x, \tau \geq H_x),
\]

whence with $z \to -\infty$ in (3) it follows that

\[
P(B_{\tau} \geq x, \tau < H_x) = P(B_{\tau} < x, \tau \geq H_x) = 0.
\]

* apart from disagreement on a null set.
Therefore
\[\{B_T \geq x\} = \{M_T \geq g(x)\} \text{ for all } x \in \mathbb{Q} (= \text{the rational numbers}) \text{ a.s.}. \]
As for all \(x \in \mathbb{R} \) we can find a sequence \((x_n) \) in \(\mathbb{Q} \) increasing to \(x \) and \(g \) is left-continuous, we get
\[\{B_T \geq x\} = \{M_T \geq g(x)\} \text{ for all } x \in \mathbb{R} \text{ a.s.}, \]
whence
\[M_T \geq g(B_T) \text{ a.s.}. \]
(Simply observe that
\[B_T \in [x, x + \frac{1}{n}] \iff M_T \in [g(x), g(x + \frac{1}{n})] \]
for all \(x \in \mathbb{R} \) and all \(n \in \mathbb{N} \) a.s.)
Now \(t < T \) implies \(M_T < g(B_T) \) and therefore \(T \geq t \) a.s.. As \(T \) is standard, it follows that for any stopping time \(\sigma \) with \(T \leq \sigma \leq t \) a.s..
\[E|B_\sigma - x| = E|X - x| \text{ for all } x \in \mathbb{R}, \]
which can only happen if \(T = \sigma \) a.s.

Let \(T^- \) be the A-Y stopping time embedding \(-X \) in \((B_T)\), then
with \(m_T = \inf_{0 \leq s \leq T} B_s \),
\[T^- = \inf \{ t : m_t \leq g_{-X}(-B_t) \} \]
and
\[B_{T^-} \overset{D}{=} X. \]

Lemma 1.
If \(T = T^- \) a.s., then there are \(a \leq 0 \leq b \) with \(P(X \in \{a, b\}) = 1. \)

Proof.
First observe that
\[-g_{-X}(-x) \leq x \leq g_X(x) \quad (x \in \mathbb{R}) \]
Now for a path (of \((B_t)\)) with \(T = T^- \) and \(B_T = B_{T^-} = x \) we have
\[M_T \geq g_X(x) \quad (\geq x), \text{ and} \]
\[m_T \leq -g_{-X}(-x) \quad (\leq x). \]
That implies however that
\[-g_{-X}(-x) = x \text{ or } g_X(x) = x. \]
[If such a path first reaches level \(M_T \) and then level \(m_T \), it is forced to cross level \(x \) in between (continuity of paths) and '\(T \) stops to soon', unless \(-g_{-X}(-x) = x \); conversely if level \(m_T \) is reached before level \(M_T \), '\(T^- \) stops to soon', unless \(g_X(x) = x \).]
Now (4) implies $x \leq \inf X =: a(\leq 0)$, or $x \geq \sup X =: b(\geq 0)$.

As $T = T^{-a.s.}$, we can conclude

$$B_T^{-} \leq a \quad \text{or} \quad B_T^{+} \geq b \quad \text{a.s.}$$

As $X \overset{D}{=} B_T$, it follows that $P(X \notin (a,b)) = 1$.

By definition of a and b, $P(X \in [a,b]) = 1$.

It follows that a and b are finite and $P(X \in \{a,b\}) = 1$.

Proof of theorem 2.

By lemma 1 it is enough to prove $\tau = T$ a.s. and $\tau = T^{-}$ a.s.

As T^{-} is the A-Y stopping time embedding $-X$ in $(-B^{-}_{T})$, it is sufficient to prove, that an ultimate stopping time is equal to the A-Y stopping time a.s., i.e. $\tau = T$ a.s.

With H as in the proof of theorem 1 we have for all $x \in \mathbb{R}$ by (1)

$$P(\tau \geq H^{-}_{X}) \leq P(T \geq H^{-}_{X}) = P(X \geq x).$$

As τ is ultimate and T is standard, there is a stopping time $\sigma^{-}_{X} \leq \tau$ with

$$B_{\sigma^{-}_{X}}^{+} \overset{D}{=} B_{T^{-}}^{+}.$$ But then

$$P(M_{\tau} \geq g_{X}(x)) \geq P(B_{\sigma^{-}_{X}} \geq g_{X}(x)) = P(B_{T^{-}}^{+} \geq g_{X}(x)) = P(T \geq H^{-}_{X}),$$

and so

$$P(M_{\tau} \geq g_{X}(x)) = P(X \geq x).$$

By theorem 1 it follows that $\tau = T$ a.s..

References.

[1] J. AZEMA et M. YOR,

a. Une solution simple au problème de Skorokhod.

b. Le problème de Skorokhod: compléments à l'exposé précédent.

[2] N. FALKNER,

On Skorokhod embedding in n-dimensional Brownian Motion by means of natural stopping times.

[3] I. MEILIJSON,

There exists no ultimate solution to Skorokhod's problem.