JOHN C. TAYLOR

Some remarks on Malliavin’s comparison lemma and related topics

Séminaire de probabilités (Strasbourg), tome 12 (1978), p. 446-456

<http://www.numdam.org/item?id=SPS_1978__12__446_0>
Some remarks on Malliavin's comparison lemma and related topics
by
J.C. Taylor

Introduction. Let M be a connected non-compact C^3-manifold and let L be a strictly elliptic second order differential operator on M with locally Lipschitz coefficients. If $K \subset M$ is compact with non-void interior let e_K denote its equilibrium potential. If h is a non-degenerate C^3-function on $M\backslash K$ valued in $[1, +\infty[$, the comparison lemma in question gives upper and lower estimates for $e_K(y)$ of the form $c a(h(y))$, where a is the equilibrium potential for $[1, +\infty[$ corresponding to appropriate diffusions on \mathbb{R} that are explicitly described in terms of h and the operator L.

A purely analytic (and short) proof of these estimates (for locally Holder continuous coefficients) due to Azencott (and inspired by [6] and [11]) appears as part of the proof of proposition 5.2 in [2]. However, Malliavin [7] obtains these estimates by comparing the trajectories of various diffusions and this article, which presents Malliavin's ideas (and additional remarks), can be viewed as an illustration of the use of various probabilistic techniques.

In particular it is remarked that the functoriality of diffusions follows immediately once they are defined as solutions to the martingale problem.

1. The diffusion associated with L. For simplicity (and also because [1] is not generally available) it will be assumed $L 1 = 0$. An exposition of Azencott's arguments for this case is given in [12] (the general situation being considered in [1]).

Let M be a connected manifold of class C^2.

If (U, ϕ) is a chart of M and $u \in C^2(M)$ then

$$(Lu) \phi^{-1}(x) = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2 v}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(x) \frac{\partial v}{\partial x_i}$$

where $v \phi = u$. The coefficients are assumed to be locally Hölder continuous and the matrix $(a_{ij}(x))$ to be positive definite.

Denote by $\mathcal{A}(M)$ the set of continuous functions $\omega : \mathbb{R}^+ \to M \cup \{\partial\}$ (the one-point compactification of M) that are absorbed by ∂ i.e. $\omega(t) = \partial$ implies $\omega(t+s) = \partial$ for all $s > 0$. Let $X_t : \mathcal{A}(M) \to M \cup \{\partial\}$ be the canonical coordinate maps $X_t(\omega) = \omega(t)$ and let $\mathcal{F}_t = \sigma(X_s | 0 \leq s \leq t)$. Define

$$\delta(\omega) = \inf\{t | X_t(\omega) = \partial\}.$$
Definition 1. A probability P on $(\mathcal{S}_M, \mathcal{F}_t)$ is said to be a solution of the (x, L) -martingale problem if

1. for all $f \in C^2_c(M)$, i.e. twice continuously differentiable and with compact support,

$$C_t f = f_0 X_t - f_0 - \int_0^t L f_0 X_s ds$$

is a martingale with respect to $(\mathcal{G}_t, \mathcal{F}_t, P)$; and

2. \[P[X_0 = x] = 1. \]

Theorem 2. (Azencott; cf [12]).

For all $x \in M$ there is one and only one solution P^x to the (x, L) -martingale problem.

Definition 3. $(\mathcal{G}_t, \mathcal{F}_t, P^x)_{x \in M}$ is called the diffusion associated with L.

It turns out (see [12]) that because of the above uniqueness the process $(X(M), P^x)_{x \in M}$ satisfies the strong Markov property. In [2] Azencott characterizes its transition semigroup as the minimal sub-Markovian semigroup (P_t) such that for all $f \in C^2_c(M)$

1. $\left(\frac{\partial}{\partial t} - L\right) P_t f = 0$, and
2. $\lim_{t \to 0^+} P_t f(x) = f(x)$ for all $x \in M$.

2. The functoriality of the diffusion.

Consider M_1, M_2 two connected C^2-manifolds and let $\psi : M_1 \to M_2$ be a proper map of class C^2. Let L_1, L_2 be two strictly elliptic operators on the corresponding manifolds for which L_1^1 and L_2^1 are both zero and such that, for all $f \in C^2_c(M_2)$

$$L_1(f \circ \psi) = (L_2 f) \circ \psi.$$

Let $(P^x)_{x \in M_1}$ and $(Q^y)_{y \in M_2}$ be the families of probabilities that define the corresponding diffusions.

Proposition 4. The canonical map $\overline{\Omega}(\psi) : (M_1, P^x) \to (M_2, Q^y)$ induced by ψ sends P^x to $Q^{\psi(x)}$ for all $x \in M_1$. In other words, the diffusion associated to L is a covariant functor on the obvious category.

Proof: The formula $X^x_t \circ \overline{\Omega}(\psi) = \psi X^1_t$ for all $t > 0$ determines $\overline{\Omega}(\psi)$. Let $x \in M_1$ and let $Q = \overline{\Omega}(\psi)_x P^x$ be the image of P^x under $\overline{\Omega}(\psi)$. It is then easy to see that Q is a solution of the $(\psi(x), L_2)$ -martingale problem.

Remark 1. The result is not new. It is merely another way of showing the functoriality of the semigroup with infinitesimal generator L which can be realised as the transition semigroup of a strong Markov process.

2. Use of [1] rather than [12] allows one to drop the condition that $L_1^1 = 0$.

Let $X(M) = (\Omega(M), \mathcal{G}_t, X_t, \xi)$.

Definition 1. A probability P on $(\Omega(M), \mathcal{F}_t)$ is said to be a solution of the (x, L) -martingale problem if

1. for all $f \in C^2_c(M)$, i.e. twice continuously differentiable and with compact support,

$$C_t f = f_0 X_t - f_0 - \int_0^t L f_0 X_s ds$$

is a martingale with respect to $(\mathcal{G}_t, \mathcal{F}_t, P)$; and

2. \[P[X_0 = x] = 1. \]
3. A particular case of this situation is known as the theorem of Eells-Malliavin (see [8] p.168).

4. Let \(M_1 = \mathbb{R}^n \setminus \{0\} \), \(M_2 = \mathbb{R}^\ell \) and \(\psi(x) = |x| \). If \(L_1 = \Lambda \) and \(L_2 g = g'' + \frac{(n-1)}{4|x|} g' \) then the image of Brownian motion on \(M_1 \) under \(\psi \) is the appropriate Bessel process on \(\mathbb{R}^\ell \) (pointed out by J. Faraut).

5. The properness of \(\psi \) is used twice. First, to define \(\Omega(\psi) \) and secondly to ensure that for all \(f \in C^2_c(M_2) \), \((\delta f - \frac{1}{2} \ell f) \) is integrable (because it is exactly \((\delta \psi) \delta \psi^1 - (\delta \psi) \delta \psi^1 - \frac{1}{2} \ell \ell \delta \psi \delta \psi^1 ds \)). The arguments given on p.109 of [12] suggest that the first use is not essential and consequently the result is probably true as long as the integrability is preserved.

The case of a fibration with non-compact fibre is perhaps worth considering.

The associated increasing process.

Let \(M \) and \(L \) be as in 1° and for \(f \in C^2(M) \) let \(C_t = C^f_t = (x_t - \int_0^t f_s \sigma_s \, ds) \). Then for all \(x \in M \), \((C_t^x) \) is a local martingale on \(\mathcal{F}_t \) in the sense that there is an increasing sequence \((\tau_n) \) of stopping times \(\tau_n < \tau \) such that \((C_t^x) \) is a uniformly integrable martingale for all \(n \). Consequently it is natural to determine the increasing process associated with \(C_t^x \) up to \(\tau \) (i.e. to compute \(C_t^x \)).

Theorem 5. Let \(f \in C^2(M) \). Then, for each \(x \), \(C_t^x = \int_0^t \nabla f \sigma_s \, ds \) on \([0,\tau] \) where \(\nabla f = f_t \), which in local coordinates \((U,\psi)\) is

\[\nabla 1_j(x) = \frac{\partial}{\partial x_j} \] with \(g\psi = f \) (the square of the length of the intrinsic gradient of \(f \) associated with \(L)\).

Proof: Before giving a complete proof of this result the special case of \(M = \mathbb{R}^n \) will be discussed and then an easy "proof" will be given which unfortunately contains a flaw.

1) \(M = \mathbb{R}^n \). If \(\sigma \) is a positive square root of \(\sigma \) then the solution \(Y^y \) of the \((y,L)\)-martingale problem can be constructed via the unique solution of the stochastic integral equation

\[Y_t = y + \int_0^t \sigma^1(y_s) \, dB_s + \int_0^t \sigma^2(y_s) \, ds \]

where \((B_s) \) is Brownian motion on \(\mathbb{R}^n \) and \(b(x) = (b_1(x),\ldots,b_n(x)) \) (see Girsanov [5] theorem 3).

For \(f \in C^2(M) \) Ito's lemma states that

\[\int_0^t f_s \delta \psi_s \, ds = f(y) + \sum_{i=1}^n \int_0^t \frac{\partial}{\partial y_i} f_s \sigma^i_s \, ds + \frac{1}{2} \sum_{i,j=1}^n \int_0^t \frac{\partial^2 f_s}{\partial y_i \partial y_j} \sigma^i_s \sigma^j_s \, ds \]

for each \(y \).
where Y^i_t and B^i_t denote the i-coordinate of the vector Y^i_t (resp. B^i_t) and

$$V^i_t = \sum_{j=1}^n \int_0^t \sigma^i_{j}(Y) dB^j_s$$

Consequently

$$C^f_t = \int_0^t f(Y_t) dB^j_s \quad \text{and hence} \quad <C^f_t, C^f_t> = \int_0^t f(Y_t) dB^j_s$$

Remark. This shows that the result holds in general up to the exit time from a coordinate neighbourhood of x and so we could hope to prove it in general by patching things together with stopping times.

2) An incomplete proof for general M.

In the second article in [9] on the Littlewood-Paley inequalities MEYER defines a weak-type of infinitesimal generator A for the transition semigroup (P_t) of a "right" process. Specifically, $f \in D(A)$ and $Af = g$ if

1) f is bounded and universally measurable on the state space E;
2) g is universally measurable on E and $\mathbb{E}_0 |g|^p$ is bounded for all $p > 0$ (where \mathbb{E}_0 is the associated resolvent); and
3) for all $p > 0$, $f = \mathbb{F}_p (pf - g)$.

In the present context it is clear that, for each $f \in \mathbb{C}^2_c(M)$, $P_t f - P_s f = \int_s^t e^{(t-s)\mathbb{P}_t} Lf d\mathbb{P}_t$ and so $\frac{3}{2} P_t f(x) = P_t Lf(x)$. Hence, $\mathbb{F}_p Lf = \int_0^\infty e^{-pt} \frac{3}{2} P_t f dt = -f + pf + P_t f$.

which implies $f \in D(A)$ and $Af = Lf$. Now providing $D(A)$ is an algebra the computation of $<C^f_t, C^f_t> = A f^2 - Af$ given in [9] p. 145 is applicable.

However, it is not known whether $D(A)$ is an algebra and consequently the proof is incomplete.

The fact that $\mathbb{C}^2_c(M)$ is an algebra does however play a key role in the following proof.

3) A martingale proof (suggested by both MEYER and YOR, details due to YOR, c.f. article by YOR in this volume).

First of all note that it suffices to prove the result for $f \in \mathbb{C}^2_c(M)$ since the general result is obtained by using a sequence (T_n) of stopping times $T_n < \zeta$ that increase to ζ.

If $f \in \mathbb{C}^2_c(M)$ then as noted above $f \in D(A)$ and so (C^f_t) is a martingale that is locally square integrable (MEYER [10] p. 143).

If $J^- = (C^f_t)^2$ and $\Gamma^- = f^2 O_t + \int_0^t LfO_t ds$ then

$$J^- = f^2 O_t + \int_0^t (fO_t)^2 - 2(fO_t)^2 \frac{1}{2} = f^2 O_t + \int_0^t -2(C^f_t + \Gamma^-) \frac{1}{2} = f^2 O_t - 2(C^f_t + \Gamma^-) \frac{1}{2}$$

Set $Q_t = R_t$ if $(Q_t - R_t)$ is a local martingale. Then, since $f^2 \in \mathbb{C}^2_c(M)$, $f^2 O_t \in \mathbb{F}_0 \mathbb{F}_t O_t ds$, $C^f_t \in \mathbb{F}_0 \mathbb{F}_t C^f_t ds$ (see MEYER [10] theorem 38 p. 315) and

$$\Gamma^- - \Gamma^- = 2f^2 \int_0^t ds$$

It then follows that
\[J_t = t_0 \int_0^t Lf_0 X_s ds - 2t_0 \int_0^t \{ C_t + c_s \} d\tilde{c}_s \]
\[= \int_0^t \{ Lf_0^2 - 2Lf_0 \} dX_s . \]
Consequently, \(\langle C^f, C^f \rangle_t = -2t_0 \int_0^t Lf_0^2 dX_s ds \) is a local martingale that is pre-visible and of bounded variation. Hence, it is constant. Since it vanishes at zero this completes the proof.

4. The corresponding time change

Let \(f \in C^2(M) \) and consider the additive functional \(A_t = \int_0^t \|f\|^2 dX_s \) \(\inf \{ t < \zeta : A_t > s \} \) where \(C_t = f_0 X_t - \int_0^t Lf_0 X_s ds \) defined for all \(t > 0 \) (note that \(\|f\|^2(0) = 0 \) by convention). Set \(\sigma = \sup_{A_t} \) and denote by \(T_s \) the stopping time equal to \(\inf \{ t > s \} \) with the convention that \(\inf \phi = \zeta \). Then \(A_T = \sigma \), for all \(s > 0 \).

As is shown in the appendix, the random variable \(M_s = C_{T_s}^f \) is defined for all \(s > 0 \) (not only on \(\{s < \sigma \} \) by a limit argument and satisfies
\[f_0 X_{T_s} = f_0 X_s + M_s + \int_0^s Lf_0 X_u du , \]
where \(f_0 X_{T_s} \) is defined appropriately if \(s \leq \sigma \) (note that \(T_s = \zeta \) if \(s \leq \zeta \)). If \(\|f\|^2(u) > 0 \) for all \(x \), i.e. if \(f \) is non-degenerate, then
\[\int_0^s Lf_0 X_u du = \int_0^s (a_0 X_u) dv \text{ where } a = (Lf)/\|f\|^2 , \]
providing \(s \leq \sigma \). Consequently, for \(s \leq \sigma \), if \(Y_s = f_0 X_{T_s}, Y_0 = Y_s + M_s + \int_0^s (a_0 X_{T_s}) dv \).

MALLIAVIN [7] remarks that \((M_s) \) is a Brownian motion. As shown in the appendix, this is so up to the \((F_{T_s}) \)-stopping time \(\sigma \). In other words, \((M_s) \) is a stopped Brownian motion.

5. The comparison lemma.

Let \(K \subset M \) be compact with non-void interior and consider the equilibrium potential \(\zeta_K \) of \(K \) on \(\mathbb{M}K \) i.e. \(\zeta_K(x) = E^x[T < \zeta] \) where \(T \) is the hitting time of \(K \). It suffices to study \(\zeta_K \) on a connected component of \(\mathbb{M}K \) and so to simplify notation it will be assumed that \(\mathbb{M}K \) is connected.

Denote by \(f \) a non-degenerate proper \(C^3 \)-function defined on a neighbourhood of \((\mathbb{R}^n)^C \) with values in \(\mathbb{R}^+ \). Then \(f(\mathbb{M}K) \) is an interval \(I \) with end points \(a < b \) and it will be assumed that as \(x \to \partial \) in \(M \) \(f(x) \) converges to \(b \). Replacing \(f \) by \(\frac{1}{b-x} \) if \(b < x \) it is clear that one can assume \(b = +\infty \). To simplify matters it will be assumed that \(\partial K = \{ f = 1 \} \).

Let \(u \) be a \(C^2 \)-function on \(I \). Then \(L(uf) = \frac{1}{2} \|f\|^2(u''f) + + Lf(u'f) = \frac{1}{2} \|f\|^2(u'f) + a(ff) \) where \(a = \frac{Lf}{\|f\|^2} \) as can be seen by a computation in local coordinates. Consequently, the differential operator \(L \) modulo \(\|f\|^2 \) factors through \(f \) and only if \(a \) is constant on the level hypersurfaces of \(f \). In this case the "radial" behaviour of the diffusion associated with \(L \) on \(\mathbb{M}K \) can be reduced to that of a \(1 \)-dimensional diffusion on \(\mathbb{R} \). However, when this is not so estimates are obtained for the behaviour of \(\zeta_K \) on \(\mathbb{M}K \) by studying two diffusions on \(\mathbb{R} \).
Let $a^+(r) = \max \{1/(\log x)^2 | f(x) = r\}$ and $a^-(r) = \min(1/(\log x)^2 | f(x) = r\)}$. These two functions can be extended from $[1, \infty)$ to all of \mathbb{R} so as to be Hölder -continuous functions on \mathbb{R} since $f \in C^3$. The two diffusions in question are determined by the differential operators $D^+ = \frac{1}{2} d^2 dr^2 + a^+ \frac{d}{dr}$ and $D^- = \frac{1}{2} d^2 dr^2 + a^- \frac{d}{dr}$.

Fix $x \in [1, \infty)$ and hence $f(x) = r \in \mathbb{R}$. Let $U = \{1 \leq f\}$ and let T be the hitting time of U for the diffusion on M. The strictly increasing process (A_t), $A_t = \int_0^t \int f(x) ds dy$ determines a time change (T_s) such that if $Y = fX_{T_t}$ and $M = C^f_{T_{T_t}}$ then:

1. $Y_t = Y_0 + M_t + \int_0^t a_0 X_{T_s} dv$; and
2. (M_t) is a Brownian motion stopped at $\sigma^T = \sup A_t$.

Let α denote either a^+ or a^- and let (U_t) be the solution of the stochastic integral equation

$$U_t = r + \int_0^t (\alpha U_s) ds$$

for the existence and uniqueness, see [5]).

When $\alpha = a^+$ let U^+_t denote the corresponding solution.

Proposition 6. (Comparison Lemma).

The following results hold:

1. $U^-_t \leq Y_t \leq U^+_t$ for all $t < \sigma^T$
2. $fX_T = \alpha \Rightarrow U^+_T = \alpha$
3. $fX_T = 1 \Rightarrow U^-_T = 1$, where S_\pm are the exit times from $(1, \infty)$ of the processes (U_t).

Proof: (MALLIAVIN [7]). To prove (1) first replace a^+ by $a^+ + \epsilon$ and let (U^ϵ_t) be the corresponding solution. Then the following modification of a lemma due to SKOROKHOD ([13] p.125) shows that $Y_t \leq U^\epsilon_t$ for all $t > 0$.

Let $G_t = U^\epsilon_t - Y_t$ and $k_t = a^+_\epsilon U^\epsilon_t - aX_{T_t}$. Then $G_t = \epsilon t + \int_0^t k_s ds P^\epsilon - a.s.$ since $P^\epsilon(X_0 = x) = 1$ implies $Y_0 = x$ P^ϵ-a.s. Let $S = \inf \{t|0 < t < \sigma_T, G_t \geq 0\}$. Then S is an (\mathbb{F}_t) stopping time and $S > 0$ P^ϵ-a.s.. This follows since k_t is continuous in t, $k_0 = a^+(r) - a(x) > 0$ and so $k_t(\omega) > \epsilon$ for $0 < t < \delta(\omega)$. If $t' = S(\omega) < \epsilon$ then $G_{t'} = 0$, $k_{t'}(\omega) = a^+(f(X_{t'}(\omega))) - a(X_{t'}(\omega)) > 0$. Since $k_t(\omega) > \epsilon$ if $S(\omega) - \delta_1(\omega) < t < S(\omega)$ it follows that for such t, $0 < G_t(\omega)
\
Similarly, replacing a^{-} by $a^{-} - \epsilon$ it follows that $U^{-\epsilon}_t \leq Y_t$ for all $t > 0$.

To complete the proof of (1) it therefore suffices to show that
\[\lim_{t \to 0} \frac{\delta}{t} = u_t^+. \]
In view of Girsanov's result on uniqueness [5], this follows from
YAMADA [14] (Theorem 1.2).

The remaining statements (2) and (3) are immediate consequences of
(1) since \(\delta \) (the lifetime of the diffusion on \(\mathbb{M}\mathbb{K} \)) can be viewed as
the entrance time of \(\mathbb{K} \cup \{\delta\} \) when starting from \(x \in \mathbb{M}\mathbb{K} \).

6°. Extension of the stopped Brownian motion \((M_t)\).

If the martingale \((M_t)\) on \((\mathbb{U}(\mathcal{M}), P, \mathcal{F}_t)\) was in fact a Brownian
motion then the solution \((U_t)\) of the stochastic integral equation
\[U_t = x + M_t + \int_0^t \alpha U_s ds \]
would describe the diffusion on \(\mathbb{R} \) starting from \(x \) that corresponds to the
infinitesimal generator
\[\frac{1}{2} d^2_2 \frac{d}{dr^2} + \alpha \frac{d}{dr} . \]

Then the comparison lemma could be directly applied to show that
\[P^X[U^+_{S^+} = 1] \leq \varepsilon_K(x) \quad \text{and} \quad 1 - \varepsilon_K(x) \leq P^X[U^-_{S^-} = + \infty] = 1 - P^X(U^+_{S^+} = 1) \]
where
\[\varepsilon_K(x) = P^X(\omega, X_T = 1) \quad \text{and} \quad T = T_{(X^c,T)} . \]
Hence,
\[P^X[U^+_{S^+} = 1] \leq \varepsilon_K(x) \leq P^X[U^-_{S^-} = 1] , \]
where the times \(S^\pm \) now refer to exit from \((1, + \infty)\).

Therefore, in some way \((U_t)\) has to be extended so as to describe the
diffusion on \(\mathbb{R} \). Malliavin does this by tacking onto the trajectories
\[t \mapsto U_t(\omega) \]
the trajectories of the diffusion on \(\mathbb{R} \) that start from \(U_0(\omega) \). As he points out "this identification is not completely straightforward and a
little additional construction seems to be needed [7]".

Rather than follow this route I propose to outline results of DAMBIS
[3] which immediately permit \((M_t)\) to be "extended" so as to give a Brownian
motion (a trick used in [3]) on a larger probability space. This will then
quickly give the desired extension of the process \((U_t)\).

Let \((\mathbb{U}, \mathbb{P}, \mathcal{F}_t)\) satisfy "les hypothèses droites". Denote by \((X_t)\)
and \((Y_t)\) two right continuous martingales on this space and let \(T \) be a stopping
time. Set \(Z_t = X_{t\wedge T} + Y_{t\wedge T} \).

Theorem 7. (DAMBIS [3]) \((Z_t)\) is a right continuous martingale. Furthermore,
if \((X_t)\) and \((Y_t)\) are square integrable with \((A_t)\) and \((B_t)\) the corres-
ponding associated increasing processes, \((Z_t)\) is square integrable and the
increasing process \((C_t)\) associated with \((Z_t)\) is given by the formula
\[C_t = A_{t\wedge T} + B_{t\wedge T} . \]

Corollary 7. Let \((M_t)\) be a Brownian motion on \((\mathbb{U}, \mathcal{F}_t, \mathbb{P})\) stopped at the
stopping time \(T \). Then there exists (i) a Brownian motion
\((\mathbb{U}, \mathcal{F}_t, \mathbb{P}, \mathbb{B}_t, \mathbb{P})\), (ii) an \((\mathcal{F}_t)\) -stopping time \(\overline{T} \), and (iii) a map \(\pi: \overline{\mathbb{U}} \to \mathbb{U} \) such that:
(1) \(T \cap \pi = \overline{T} \);
(2) \(M_t \circ \pi = \mathbb{B}_{t\wedge \overline{T}} \); and
(3) \(\pi \mathbb{P} = \mathbb{P} \) on \(\mathbb{G} \).
Proof: (DAMBIS) Let \((B_t)\) be a Brownian motion on \((\tilde{F} = \tilde{G} \perp \tilde{H} , \tilde{P} = \tilde{P} \perp \tilde{Q})\).

Let \(\tilde{\omega} = \tilde{\Omega} \times \tilde{\pi}, \tilde{F} = \tilde{G} \otimes \tilde{H} \perp \tilde{P} = \tilde{P} \perp \tilde{Q}\). Define \(\tilde{M}_t = M_{\tilde{t}}, \tilde{B}_t = B_{\tilde{t}}\phi\) where \(\phi(\omega, \lambda) = \lambda\). Then \((\tilde{M}_t)\) and \((\tilde{B}_t)\)

are continuous martingales on \((\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathcal{F}}, \tilde{P})\). Furthermore \((\tilde{M}_t)\) stops at \(\tilde{T} = \tilde{T}_{\tilde{\pi}}\), which is an \(\tilde{\mathcal{F}}\) -stopping time.

Define \(\tilde{B}_t = \tilde{M}_t + \tilde{B}_t - \tilde{T}_{\tilde{\pi}}\). Then \((\tilde{B}_t)\) is a square integrable continuous martingale whose associated increasing process is \(\tilde{T}_{\tilde{\pi}} + t - \tilde{T}_{\tilde{\pi}} = t\).

Proposition 8. Let \((V_t)\) be the solution of the stochastic integral equation on \(\tilde{\Omega}\)

\[
(*) \quad V_t = \int_0^t \alpha \circ V_s ds .
\]

Let \((U_t)\) be the solution of the stochastic integral equation on \(\Omega\)

\[
U_t = \int_0^t \alpha \circ U_s ds .
\]

Then \(U_t \circ \tilde{\pi} = V_t \circ \tilde{T}_{\tilde{\pi}}\).

Proof: \((V_t)\) is the solution of the stochastic integral equation

\[
V_t = \int_0^t \alpha \circ V_s ds .
\]

Since \((U_t)\) solves the same equation the result follows.

Let \(S^\pm\) be as in the statement of proposition 6. Let \(R^\pm\) be the exit times from \((1, + \infty)\) for the diffusion on \(R^\pm\) with differential generator \(D^\pm\).

Since these diffusions when started from \(r\) can be realized by \(V^\pm\) (solutions of equation \((*)\) with \(a = a^\pm\)) \(\pi^{-1}(U^\pm_{R^+} = \infty) \subset \{V^\pm_{R^+} = \infty\}\) and \(\pi^{-1}(U^\pm_{R^-} = 1) \subset \{V^\pm_{R^-} = 1\}\).

Consequently, the previous corollary (3) and the comparison lemma imply the following result.

Corollary 9.

\[
P^X(\ell \circ V^\pm_{R^+} = \infty) \leq P^X(\ell \circ V^\pm_{R^-} = \infty) \quad \text{and} \quad P^X(\ell \circ V^\pm_{R^+} = 1) \leq P^X(\ell \circ V^\pm_{R^-} = 1) .
\]

Finally, in view of the equations \((*)\) with \(a = a^\pm\) it follows that

\[
P^X(\ell \circ V^\pm_{R^+} = \infty) = 1 - h^+(r) \quad \text{and} \quad P^X(\ell \circ V^\pm_{R^-} = 1) = h^-(r) \quad \text{where} \quad h^\pm \text{ are the solutions of the Dirichlet problem for } D^\pm \text{ on } (1, \infty) \text{ with boundary value } \ell(1) .
\]

Hence, this yields.

Corollary 8. \(h^+(r) \leq \ell_X(r) \leq h^-(r)\).

Appendix. The definition and properties of \((M_t)\)

1. Let \(C^\pm_t = C_t = f_0 \circ X_t - f_0 \circ X_0 - \int_0^t Lf_0 \circ X_s ds\). Then, for all \(x\), \((C_t)\) is a local martingale on \((\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathcal{F}}, \tilde{P})\). Let \((T_n)\) be a sequence of stopping times \(T_n < \zeta\) that reduces \((C_t)\) (p.292) and the local martingale \((C^\pm_t - A_t)_t\), where \(A_t = \int_0^t \|f_0\|^2 \circ X_s ds\).

2. Fix \(s = a\) and consider \((C_{t \wedge \zeta})\) with associated increasing process \((A_t \wedge \zeta)_t\). Then \((T_n)\) reduces the local martingale \((C^\pm_t - A_t \wedge \zeta)_t\).
Lemma. For all $a, b > 0$ \((C_{TA}^{AT})_{a,n}\) is a uniformly integrable martingale on
\((\Omega, \mathcal{F}, (\mathcal{F}_t), P, P^x)\).

Proof: \(E[C_{TA}^{AT}] = E[A_{TA}^{AT}] \leq a\) and so, if \(X_t = C_{TA}^{AT(n+1)}\), \((X_t)\) is a uniformly integrable martingale relative to \((\mathcal{F}_t)\). Hence, \(E[X_{T_t(n+1)}^P] = X_{T_t(n+1)}\).

The uniform integrability follows from the first inequality.

Define \(C_{TA}^{AT} \) to be \(\lim_{n \to \infty} C_{TA}^{AT(n)}\). Then \(C_{TA}^{AT} \) agrees with its usual value for \(t < \zeta\) and if \(T_{TA}^{AT} \geq \zeta\) its value is given by this limit rather than by

\[C_{\zeta} = -\int_{0}^{\zeta} f_0 X_0 u \, du. \]

Lemma. \((C_{TA}^{AT})_{t} \) is a uniformly integrable martingale on \((\Omega, \mathcal{F}, (\mathcal{F}_t), P^X)\).

Proof: Let \(t_1 < t_2 \) and \(\w \in \mathcal{F}_{t_1} \). Then \(E[1_{C_{TA}^{AT(t)}}, \mathcal{F}_{t_1}] = E[1_{C_{TA}^{AT(t)}}, \mathcal{F}_{t_2}] \) and uniform integrability implies \(E[1_{C_{TA}^{AT(t)}}, \mathcal{F}_{t_1}] = E[1_{C_{TA}^{AT(t)}}, \mathcal{F}_{t_2}] \).

Furthermore, \(E[C_{TA}^{AT(t)}] \leq a \) \(\forall n, t\) implies \(E[C_{TA}^{AT(t)}] \leq a\) and so \((C_{TA}^{AT})_{t} \) is uniformly integrable.

Corollary (c.f. Dambis [3] lemma 6). \((C_{TA}^{AT})_{a} \) is a martingale on \((\Omega, \mathcal{F}, (\mathcal{F}_t), P^X)\).

Proof: If \(a < b\) then \(E[C_{TA}^{AT}, \mathcal{F}_b] = C_{TA}^{AT, b}\).

Lemma. \((C_{TA}^{AT} - \sigma A)\) is a martingale on \((\Omega, \mathcal{F}, (\mathcal{F}_t), P^X)\).

Proof: For each \(n\), \((C_{TA}^{AT} - \sigma A)_{n,At} \) is a martingale. Since \(C_{TA}^{AT} \) \(\Rightarrow\) \(+ C_{TA}^{AT} \) in \(L^1\) (by theorem 4.15 (iii) in [4]) and \(A_{TA}^{AT} \to A_{TA}^{AT}\) monotonically as \(n \to \infty\) it follows that \((C_{TA}^{AT} - \sigma A)_{t} \) is also a martingale. By repeating the argument it follows that \((C_{TA}^{AT} - \sigma A)_{t} \) is a martingale where \(C_{TA}^{AT} = \lim_{t \to \infty} C_{TA}^{AT} \). Note that \(A_{TA}^{AT} = \sigma A\).

Finally, the following result concludes the proof that \((C_{TA}^{AT})_{a} \) is a Brownian motion stopped at \(\zeta\).

Proposition. \((a \iff C_{TA}^{AT})\) is continuous a.s.

Proof: It is obvious on \([0, \sigma]\). If \(a = \sigma(\omega)\) then \(T_{a, \omega} = \zeta(\omega)\) and \(C_{\zeta}^{AT} \) is defined by a limit from the left. For \(a > \sigma(\omega)\), \(T_{a, \omega} = \zeta(\omega)\) and so the result follows.
Bibliography

Department of Mathematics,
McGill University,
805 Sherbrooke St. W.,
Montreal, Quebec.
H3X 2G4