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On The Construction of Kernels

by

R. K. Getoor*
1. Introduction

In a number of recent papers (see, for example, ~2~, [4J, ~5~

and [7]) the authors found it necessary to regularize certain Radon-Nikodym

type densities by means of kernels. This is straightforward if the

underlying space is nice enough. However, when the underlying space is

somewhat more complicated certain difficulties arise. Therefore it

seems as though it might be worthwhile to formulate explicitly general

conditions under which such a construction is possible. The main results

are Propositions 4.1 and 4.5 in Section 4. In Section 5 these results

are applied to the construction of densities for continuous additive

functionals of Markov processes. In Section 6, following Mokobodzki ~8 ~,

we apply these results to the disintegration of measures and the existence

of regular conditional probabilities. Only in Section 5 is an acquaintance

with the theory of Markov processes assumed. Section 6 assumes no such

acquaintance and is independent of Section 5.

This paper is purely expository and contains no new results. All

of the results described here are classical and are well known.

___
This research was supported in part by the National Science

Foundation NSF Grant 41707X.
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2. Notation and Definitions.

Let (E, e) be a measurable space and let E denote the Banach

space of bounded real valued e measurable functions on E under the

supremum norm. Let h c e be closed under countable unions and be

hereditary in the sense that if N E hand B c N, BEe, then B E h .

In addition we assume that E ~ n . The sets in h are called

"negligible" and a property p(x) depending on x ~ E is said to hold

almost everywhere (h), abbreviated a.e. (h), if the set of x for

which p(x) does not hold is contained in h. When no confusion is

possible we shall write simply a.e. rather than a.e. (h).

A measure will mean a positive finite measure unless explicitly

stated otherwise. If (E, e) is a measurable space and ; a measure

on (E, ~), then ~  denotes the completion of ~ with respect to

is the o- algebra of universally measurable sets over 6 .

Here the intersection is over all measures  on (E, e). A measure

 on (E, e) has a unique extension to (E, ~*) which we again denote

by  . Of course, E then denotes the Banach space of bounded real valued

*

~ measurable functions.

In a topological space a Borel set is an element of the smallest

0’ - algebra containing the open sets and a universally measurable set

is one that is universally measurable over the Borel sets.

A topological space Q is said to be a U-space provided it is

homeomorphic to a universally measurable subspace of a compact metric

space ~ . We shall always identify Q with a universally measurable
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subspace of  when 0 is a U-space. A topological space 0 is a

Lusin space provided it is homeomorphic to a Borel subspace of a compact

metric space ~ . This definition differs from the one given in ~3~,

but it follows readily from the results in ~3~ that it is an equivalent

definition. Again we shall always identify a Lusin space 0 with a

Borel subspace Clearly every Lusin space is a U-space. It

follows from the Choquet capacitability theorem that if 03A9 is a Souslin

subspace or the complement of a Souslin subspace of a compact metric

space ~, then (2 is a U-space. We refer the reader to j~3’] for the

definition of a Souslin space.

Let 03A9 be a universally measurable subspace of a compact metric

space ~ . Then 3! (resp. ~) denotes the 6- algebra of Borel subsets
~ ~ ~~f

of 03A9 (resp. ), and  (resp.  ) denotes the o-algebra of

universally measurable sets over (03A9, ) (resp. (, )). By hypothesis

Q ~ *. It is easy to see that A ~  if and only if there exists

A ~ 3~ such that A = that is, ? = ~~ where ~~ is the trace

of  on 03A9 defined by

(2.1) ~ - for some A E ~~ .

For emphasis we repeat that, in general, 0 is not an element 

It follows from this that a real valued function, f, on 03A9 is Borel,

i.e. 3~-measurable, if and only if there exists a real function f on

Q that is Borel, i.e. 3~-measurable, such that f = ft . . It follows
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immediately from these facts that * = *03A9 , but since 03A9 ~ * we have

that if and only if A c 0 and 

Let F (resp. F ) denote the space of bounded ? (resp. 3!")

measurable functions on Q . If V is a vector subspace of F
then a is almost linear and almost positive on V provided

(2.2) «Tf + S Tg a.e.

for f, g E V and real cy, e;

(2.3) f E V, f z 0 implies Tf ~ 0 a.e..

Recall that a.e. means except on a subset of n . If I E V it is

straightforward to check that

(2.4) Tl a. e . °

for all f E V . .

Finally if (Y, G) is a measurable space, a kernel K from

(E, C) to (Y, G) is a function K(x, A) defined for x E E and

A E a such that x -K(x, A) is ~ measurable for each A E G, and

A .~ K(x, A) is a measure on G for each x E E. The kernel K is

bounded if sup[K(x, Y) : x E E)  co . If K is a bounded kernel

from (E, e) to (Y,G), then
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(2.5) f - Kf = K(., f) = ~ K(-, > dy) f(y)

defines a bounded, positive, linear map from A to E such that if

(f)c:A with then Kf t Kf. Moreover, it is
n = n = n

immediate that any such map from A to E is given by a bounded

kernel K as in (2.5).
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3. The Compact Metric Case.

In this section we assume that Q is a compact metric space and

3~ is the cr - algebra of Borel subsets of Q . Let C = C(Q) denote

the space of real valued continuous functions on Q . Let (E, e)

and h be as in Section 2.

(3.1) Proposition. Let T: C -~E be almost linear and almost ositive.

Then there exists a bounded kernel, K, from (E, e) to (Q, ~) such

that Tf = Kf a.e. for each f E C.

Proof. Let H c C be a countable vector space over the rationals Q

which contains 1 and is dense in C. Let H+ - (h E H: h ~ 0)
and let M = Define t(x, h) = Th(x) for h E H. If c~, P ~~
and let

p, f, g) = ~x: t(x, at (x, f) + gt(x, g) ~ .

For h E H and let

N(h) = (x: h)) I N(h~) = (x: t(x, h~)  0~ .

It is immediate from (2.2), (2.3), and (2.4) that each of the above sets

is in h. Let N be the union over all f, g, h E H, and

h of the sets S, f, g), N(h), and N(h+), Then N E h
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and we define

k(x, h) = t(x, h) for x~N, h E H

=0 for x E N, h E H .

Then for each x E E, h -~ k(x, h) is a positive, rational linear

functional on H that is bounded by M. In addition Th = k(., h)

a.e. for each h E H, and x -~ k(x, h) is in E for each h E H.

Since H is dense in C (in the uniform norm) one can extend h -* k(x, h)

by continuity to C for each x. Denoting this extension by k(x, f)

again, it is clear that for each x E E, f -~ k(x, f) is a positive

linear functional on C that is bounded by M such that Tf = k(~, f)

a.e. and x -~ k(x, f) is in E for each f E C. Consequently for

each x E E, there exists a measure K(x, . ) on  such that

k(x, f) = / K(x, dy)f(y) for each f E C . Since x -~ Kf (x) - k(x, f)

is ~ measurable for each f E C, it follows from the monotone class

theorem that K is a kernel from (E, e) to (Q, 39. Clearly K is

bounded since K(x, Q) = k(x, 1) ~ M for all x. This completes the

proof of (3.1).

The following corollary is, perhaps, of more importance than (3.1)

itself. The assumptions on (Q, 3!) in the first sentence of this

section are still in force and, as in Section 2, F denotes the

bounded d measurable functions on Q .
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(3.2) Corollar . Let T: F -.E be almost linear and almost ositive

and satisfy

(3.3) if (f ) c F and 0 5 f t f E F, then
- n = - n = -

Tf t Tf a.e..
n

Then there exists a bounded kernel K from (E, e) to (~, ~) such

that Tf = Kf a.e. for each f E F .

Proof. If we restrict T to C, then using (3.1) we can find a bounded

kernel K from (E, ~) to (03A9, ) such that Tf = Kf a . e . for all

f E C . But if V denotes set of f E F for which Tf = Kf a.e.,

then V is a vector space containing C and by (3.3) has the property

that if (f ) E V and 0 S f t f with f bounded, then f E V .

Consequently V = F .

(3.4) Remark. In (3.1) and (3.2) the proof shows that K(x, I,Tlll
for all x E E .
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4. The General Case.

This section contains two extensions of Corollary 3.2.; the first

when Q is a Lusin space and the second when Q is s U-space. If

Q is Lusin Corollary 3.2 remains true as stated, but if Q is a

U-space we need to make an additional assumption. The result for

Lusin spaces is contained in Proposition 4.1 and that for U-spaces

in Proposition 4.5. The notation is the same as in the previous sections.

In particular F denotes the bounded Borel measurable) functions

on Q , while (E, ~), E, and h have the same meanings as in

Sections 2 and 3.

(4.1) Proposition. Let 03A9 be a Lusin space and let T: F ~ E be

almost linear and almost positive and satisfy (3.3). Then there exists

a bounded kernel K f rom (E, e) to (Q, J) such that Tf = Kf

a.e. for each f E F .

Proof. Let Q be a compact metric space in which Q is a Borel set.

Let 5 be the a-algebra of Borel subsets of  and F the bounded

Borel functions on Q. Then f E F if and only if f E F where f = f

on Q and f = 0 on Q-Q. Define T:  ~ E by

(4.2) Tr=T(f) ) . .

Since  ~ |03A9 is positive, linear, and preserves pointwise limits, it
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is clear that T satisfies the assumptions of Corollary 3.2 relative to

. Thus there exists a kernel K from (E, ~) to (Q, ?) such that

Tf = Kf a.e. for all But we may identify F with those

elements of F which vanish off 03A9. Consequently Tf = Kf a.e. for

all f E F . If f = 1 ~~, then a.e.

K(-, ~- ~ - T(1~~) - T(o) - 0 .

Thus N = ~x: K(x, ~- ~) ~ 0~ is in n . If we define K(x, ~ ) - K(x, ~ )

f or x ~ N and K(x, ~ ) - 0 f or x E N, then K i s a kernel f rom

(E, ~) to (Q, ~) such that Tf = Kf a.e. for all f E F, proving

(4.1).

In order to treat U-spaces we need to assume that n has a special

f orm. We assume that there exists a family M of measures on (E, ~)

such that

(4 . 3 ) n = ~B E ~: m(B) - 0 f or all 

There is considerable leeway in the choice of M for a given n . For

example, if M = (mi) is countable we may replace M by the single

measure

m -- 2L 2 ltm. ~E)) 1 m.
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without changing n . For n of the form (4.3) we define

(4.4) h - {B E ~ : m(B) - 0 for all 

(4.5) Proposition. Let 03A9 be a U-space and let n be as above.

Let T: F -~E be almost linear and almost ositive and satisf
- _ _ - 

-~

(3.3) . Then there exists a bounded ke-rnel_ K from (E, ) to (03A9, )

such that Tf = Kf a.e. (n*) for each f E F. If, in addition, M

consists of a sin le measure, K may be chosen to be a kernel from

(E, ~) to (03A9, ). In this case Tf = Kf a.e. {n) for each f E F .

Proof. Recall from Section 2 that if f E F then |.) E F _’ If  ~ 

define Tf = T(fl ). As in the proof of (4.1), T satisfies the

hypotheses of Corollary 3.2 relative to ~. Consequently there exists
^ " " ~^ ^^

a bounded kernel K from tE, ~) to (~, ~) such that Tf = Kf

^ ~o~

a.e. (1~) for all f E F. As usual the unique extension of each

^ ^

K(x, .) to  is again denoted by K(x, .). It is immediate that

x ~ K ^ (x, f ) ^ is ~
* 

measurable f or each f ^ E *. (Given f " E F ^n

and ~, a measure on F,, choose f , 1 > f 2 E F - with f 1 s f s f 2 and

" ^ ^ ^

v{fl) - v(f2) where 03BD(.) - (dx) K(x, .) is a measure on 3.>

If f E F , , th en f = f on 03A9 and f = 0 is in * and so
^ 

^n 4 n n
Kf = Kf exists and is in E . We claim that Tf = Kf a.e. (n ),

~ 

^ ^" "

To this end fix m ~ M. Then v(f) - m(Tf) defines a measure on F

^ ^ " "

that agrees with f -~ m(dx) K(x,~) on F. Consequently the unique
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extension of v to F* is given by v(.) = m(dx) K(x, .). Given

f E F let f = f on 03A9 and f = 0 on (2 - 03A9. Then f and so

there exist fl, f2 E F with f s f2 and v(fl) - v(f2)’
Since f - 1|03A9 and f - 2|03A9 are in F and

satisfy f S f2 it follows that Tf2 a.e. (n).

But by definition i = while i = i a.e. (n) by construc-

tion of K, i = l, 2. Finally 1 ~  ~ Kf2 and by the definition

of v, Kfl = Kf2 a.e. (m). Combining these facts with Kf = Kf we

see that If = Kf a.e. (m) . Since E ~* and m E M is

arbitrary, If = Kf a.e. (n ) for each f E F. Consequently a.e.

* w w 
A

{n ) one has K1 
= T1 = T1 - K1 , or

(4 . 6 ) N* = {x: (x, ) ~ K(x, 03A9)} E n .

Thus if we define K(x, .) = K(x, .) for x ~ N* and K(x, .) = 0

n *
for x EN, then K is a kernel from (E, ~ ) to {~, ~) and

*
If = Kf a.e. {h ) for all f This establishes the first

assertion in (4.5).

If M consists of a single measure m, then there exists 

such that Nand m(N) - m(N~) - 0 where N~ is defined in (4.6).

In this case if we define K(x, ~) - K(x,.) for x ~ Nand K(x, ~) - 0

for x E N, then K(x, ~) is a measure on (~, ~) for each x, and

~x: K(x, ~) ~ K(x, ~)~ = N. If f E F then there exists f in F
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such that fl - f. If x ~ N, K(x, .) = K(x, .) is carried by Q

and so K(x, f) = K(x, f), while if x E N, K(x, f) = 0. Since

Kf E E and N E h c C, it follows that Kf is in E. That is, K

is a kernel from (E, e) to (Q, 3?) Clearly Kf = Tf a.e. (h)

in this case. This completes the proof of (4.5).

Remarks. In certain applications one would like to construct a kernel K

from (E, ~) to (Q, ) rather than from (E, ~*), for general families

M. I have not succeeded in doing this, and to the best of my knowledge

it remains an open question. Also of interest is whether or not

Proposition 4.1 is valid as stated when Q is a U-space. In the

actual applications that I have in mind (see the next section) Q is

the complement in Q of a Souslin subspace of Q, but I do.not see

how to make use of this added information.
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5. Continuous Additive Functionals.

Let E be a Lusin space and ~ the Borel sets of E. Let

(Pt)tz0 be a semigroup of Markov kernels from (E, ~*) to (E, ~)

that satisfies the hypotheses of the right, that is, HDl and HD2

of [9]. Let

X = (03A9, 0, 0t, Xt, P  , ... )

be the canonical right continuous realization of (Pt). We refer the

reader to ~9~ for the basic properties of "right" processes. It is

known (see ~b~ p. 235) that there exists a compact metric space I

containing (2 such that  - 03A9 is Souslin and 0 is the Q- algebra

of Borel subsets In particular (~, ~C) is a U-space. However,

Q is not a Lusin space in general.

Let ~+ denote the collection of continuous, adapted additive

functionals A such that  ~ for all x E E and t  ~ .

Let 1+ be those elements of 
+ 

having bounded one-potentials, and

and 1 = 1+ - 1+. For simplicity we shall deal with

/ but one could just as well consider . We shall need the following

result of Benveniste and Jacod ~2~. If A, B and A   B, then

A = f * B where f z 0 is ~1 measurable. Here ~1 is the smallest

03C3-algebra on E relative to which all a- excessive functions, 0,
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are measurable, and f%~B is the functional

(f * B)t = "b

Clearly f is determined up to a set of B potential zero, that is,

a set with U1(x, r) - 0 for all If ~n is the

Q- algebra of nearly Borel subsets of E, then 8 ~ ~1 C 6 d C

and (~1)* = ~*.

Let (W, ~) be a U-space and suppose that we are given a map from

G to ~1, g -A(g) satisfying

(5.1) g ~ 0 implies A(g) E ~1 +’ ;

(5.2) aA(g) + BA(h) for g, h E G

and real;

(5.3) Given (g) n with t g E G

then T for all f E E+. -

In the usual applications (W, Q) is either (~, ~ ) or (E, ~) .

Let A = 1+ and let n consist of all 0393 ~ ~1 of A-potential

zero. Then relative to the measurable space (E, ~1), h is a
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collection of negligible sets of the form (4.3). It follows readily

from (5.1) and (5.2) that for each g E G~, A(g) is absolutely

continuous with respect to A, and hence A(g) = where

Tg ~ 0 is ~1 measurable and one may suppose that ,

Tl = 1. If and we set Tg = T(g~) - T(g), then again

A(g) = (Tg)* A. It is immediate that T: G -~E1 is almost linear

and almost positive relative to h. Finally it follows from (5.3)

that T satisfies condition (3.3).

If (W, Q) is Lusin, then by (4.1) there exists a kernel, N,

from (E, ~l) to (W, Q) that is bounded by one such that

(5.4) A(g) = N{~, g)*A for all g E G .

If one only knows that (W, Q) is a U-space, then by (4.5) there exists

a kernel N from (E, ~*) to (W, Q) such that (5.4) holds. If,

however, all of the measures U1A(x, .) are absolutely continuous with

respect to a single measure m, for example if X posseses a reference

measure, then even when (W, 0 is only a U-space there exists a kernel

N from (E, e) to (W, Q) such that (5.4) holds.

Of course, if (P ) is Borel, then ~1 may be replaced by g

in all of the above statements.
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6. Disintegration of Measures and Regular Conditional Probabilities.

Let (r~, 30 be a U-space and (E, e) a measurable space. We fix

a measure v on (Q, J) and a measurable map cp: ~ -~ E. Let p = 

be the image of v under cp . Thus ~ is a measure on (E, e) and

(6 .1 ) ~ gdp = / (g o cp) d v

for all g If f fv denotes the signed measure A -*/ fdv
A

on (Q, 3) . Then p, is a signed measure on (E, ~),

and clearly   }j, . For each f E F, let Tf be a density for

f with respect . We may assume that Tf E E for each f E F and

that Tl = 1. If h = e: ~,(B) - 0~, then it is evident that

T: F -* E is almost linear and almost positive relative to h and that

it satisfies condition (3.3). Consequently there exists a kernel K

f rom (E, ~) to (Q, 3) , bounded by 1, such that f = for all

f E F. Since Kl = 1 a.e., by replacing K(x, . ) by unit mass at a

fixed point , if x is not in ~x: K(x, Q) = 1~, we may assume that

K(x, for all x in E. Combining this cp(fv) and

(6.1) we find

(6.2) /K(x, f) h(x) ~,(dx) - )J~(h) = ~ f dv
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for all f E F and h E E. When h = 1 this becomes

(6.3) v{~) - ~) ~{dx) .

In order to obtain the existence of regular conditional probabilities

we specialize (6.3) as foll.ows. Let Q be a sub-a-algebra 

Take (E, C) = (Q, Q) and 03C6 the identity map from (Q, g) to (Q, Q).

Then ~ = c~(v) is just the restriction of v to Q and K is a kernel

from (Q, Q) to (Q, ?). This means that (ju -~ K(cu, A) is Q measurable

for each A E ~, while (6.2) states that

A) h ( cu) v(dw) = v(dw)

for all A ~  and h E G. Consequently K(w, . ) is a regular conditional

probability on ( ~, ~, v} given Q.

Let us return to the general situation of (6.2) and (6.3). If we

assume a bit more about (E, ~), then we can obtain more information

about the kernel K. Let A = ~(x, y) : x=y) be the diagonal in ExE

and assume that

(6.4) 
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where ~ ® ~ is the usual product Q- algebra on E xE. Now it follows

from (6.2) that if F(x, w) is a bounded ~ ~ ~ measurable function

on then

(6.5) cu) K(x, w] 

Under assumption (6.4), F(x, w) = 1 (x, is ~ ® ~ measurable,

and with this F, (6.5) becomes

(6.6) -vl - = ~ K(x, 1) >

where cp* (x) = ~~: x). Since K(x, c~ 1 (x) ) - F(x, K(x, dw),

it is clear that x -~ K(x , t~ 1 (x)) is e measurable, and it follows

from (6.6) that K(x, .) is carried by c~ 1(x) a.e.. Of course, by

setting K(x, .) = 0 on the set of x for which K(x, .) is not carried

by we obtain a kernel that is carried by for all x.

But this destroys the fact that K(x, .) is a probability for each x.

We close this section by indicating conditions under which one can

choose a kernel K satisfying (6.2) and such that for all x in E

both K(x, 0) = 1 and K(x, .) is carried We assume that

E is a separable metric space and e the Q- algebra of Borel subsets

of E. This guarantees that (6.4) holds. We assume that Q is a

Polish space and that cp: Q -* E is a continuous surjection with the
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property that whenever A is closed (If Q is

Q- compact (Polish), then every continuous surjection of Q on E has

this property.) Under these assumptions there exists a Borel cross

section for 03C6 (see Ch. IX, Sec. 6.8 of [3]). That is, there exists

a Borel set Q~ c Q such that cp restricted to no is a bijection of

Q.. on E. Let 03C8 = (03C6|03A90 ) 1 so that 03C8 is a bijection of E on 03A90 .

But B)f is Borel from E to Q~, because if A A E ~, then

- 1 (A) - cp(A) E e since ~ is a continuous bijection of the Lusin

space 00 on E (see Ch. IX, Sec. 6..7 of [3]).

Armed with these facts it is easy to construct the desired kernel

under the above assumptions. Let K be a kernel from (E, e) to

(Q, ~) satisfying (6.2) with K(x, 0) = 1 for all x and with K(x, .)

carried by cp (x) a.e.. Let r be the set of those x such that

K(x, .) is not carried by Then r E g and }j,(r) = 0 .

Defining N(x, .) = K(x, ~) for x ~ rand N(x, .) to be unit

mass at ~(x) for x E r, it is evident that N is a kernel from

(E, ~) to (Q, 3) with the desired properties.
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