
Séminaire Jean Leray.
Sur les équations aux
dérivées partielles

JINDRICH NEČAS
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SUR LA RÉGULARITÉ DES SOLUTIONS FAIBLES

DES ÉQUATIONS ELLIPTIQUES NON-LINÉAIRES

par

Jindrich NE010DAS (Prague)

§1. Introduction.

Considérons un système elliptique d’équations aux dérivées partielles pour

le vecteur inconnu u = et cherchons une solution faible apparte-

nant au produit W des espaces de Sobolev : W - (Q) , i  m  oo, n

étant un domaine borné de l’espace euclidien Comme d’habitude, on note

Le système est de la forme

ou sous forme intégrale

Considérons le problème de Dirichlet s on se donne encore UOEW et on cherche u

de W satisfaisant (1.1) ou la forme intégrale (1 .2), tel que

sur la frontière ôn pour z = O,1,...,X -1, e o on étant la dérivée selon la norma-
r  un

le extérieure.

Les problèmes fondamentaux sont :

I. Existence, unicité, dépendance continue des données.

II. Régularité de la solution faible.

III. Existence des solutions très faibles et leur régularité.

En ce qui concerne la question 1, la partie concernant l’existence et l’uni-

cité est résolue dtune manière satisfaisant, cf. par exemple Visik F.E.

Browder [2], J. Leray-J.L. Lions [3] .
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Pour la question II, dont nous nous occuperons, on peut la considérer comme une

question classique, formulée par D. Hilbert comme son 19e problème et étroitement

liée avec la position du problème et par là avec la question I.

Si nous nous bornons à l’étude des solutions faibles, y nous pouvons donner

l’aperçu suivant de la résolution de ce problème, à savoir la démonstration que la

solution appartient à LC (xr), u (Q) s’il s agit de la régularité à l’intérieur du
r=1

domaine ou à

s’il s’agit de la régularité jusqu’à la frontière :

[5] Ch.B. Morrey, 1939 N = 2 g v é 1 (pratiquement v = 1),  x = 1, m = 2.

[4] E. De Giorgi, 1957, N é 2, v =1, x = 1, m = 2.

[7] O.A. Ladyzenskaja-N.N. Uralceva 1959 g 

[7J Ladyzenskaja-N.N. Uralceva, 1959 9 N ~ 2,v ~ 1 (pratiquement v = 1),

xr = 1, m~2 °

[6] Ch.B. Morrey, 1960, N ~ 2 ~ v = 1 ~ x ~. 1, 1 

[8] J. Necas, 1966, N =2, v = 1, x ’ 1, m = 2 .

[9] J. Neeas, 1967, =1, X ~ 1 ~ 1 

Le succès de la résolution du problème pour une équation du deuxième ordre est

basé sur le théorème de De Giorgi-Nashy cf 0 EQ De Giorgi [4] ; voici la généralisa-
tion de ce théorème par G. Stwmpacchia, cfo [18J : 1 si u est une solution faible de

l’ésquation linéaire

Revenons au système (1.1). Fonnellement, on obtient de (181), en dérivant :

. ~ . ~ . oU
ce qui est un système linéaire pour ~ 0 Pour m = 2 9 on a

~~2

alors dans le cas ,&#x3E; = 1, X = 1, on peut utiliser le théorème de De Giorgi-Nash.
Si m 4 2, il suffit de ravoir que les premières dérivées sont bornées. Pour m # 2
on peut obtenir ceci à partir de (1.2) en posant
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avec o indéfiniment différentiable, o ’-_ 0, et en faisant pour

les détails cf. E.R. Buley [20] ou J. Necas El 91.

la méthode utilisée par Ch.B. 1-Iorrey dans son travail 151 est basée sur l’es-

timation suivante: si dist (K d &#x3E; 0 , alors sous les hypothèses du

travail en question, l’intégrale

il s’ensuit facilement que avec 4 = 2 -

La même idée est utilisée dans le travail de dans nos confé-

rences, nous reviendrons aux espaces L 9 p &#x3E; 2 et utiliserons un analogue du

théorème de De Giorgi-Nash valable pour le cas v = 1, X == k s 1 : si 

est une solution faible de l’ équation

si

(et ici pour simplifier si À.. = ,, alors UEW(K) (0 1 ) , If  Ole 51  c 0 avec
-*-J pi l’L

1B satisfaisant 2  n# p .Malheureusement, on no peut pas

démontrer que loi &#x3E; N pour N é 3 ~ il existe un contre-exemple, cf. N.G, Meyers

[22]. On voit que le cas .:m = 2 g si on considère la régularité à l’intérieur du

domaine, est résolu par ce théorème. Si 1  m  co, on peut démontrer une estima-

tion a priori et à partir de ceci on revient à l’équation (1.4).

Nous nous occuperons dans nos coidérences du cas N = 2, v = 1, k ~ 1 ,
1  m  m. Pour les autres cas, cf. les livres déjà cités de Ch.B. Morrey [6] et

de O.A. La dyzenska ja-N.N, Uralceva [7].

Après avoir rédigé ces conférences, jtai pris connaissance des travaux de

E. De Giorgi [23], E. Giusti-M. ïliranda [24], Ch. B. Morrey [25] (qui ne sont pas
encore tous publiés) qui complètent d’une manière essentielle l’aperçu ci-dessous.
E. De Giorgi montre que la fonction u = avec

est une extrêmale appartenant à )]N de la fonctionnelle
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et satisfait alors au système elliptique linéaire

pour lequel la condition d’ellipticité

est valable. Le vecteur xlxl’ n’est pas borné au voisinage de l’origine.

On voit aisément, comme cela est remarqué dans ce travail, que la fonction

f(x) = jxj de n’est pas au voisinage de l’origine, quoi-
qu’elle soit une extrêmale de la fonctionnelle

f(x) satisfait alors à une équation du quatrième ordre

où la condition d’ellipticité :

est valable. Les contre-exemples de E. De Giorgi montrent que le procédé de linéa-

risation mentionné ci-dessus n’est pas applicable pour v &#x3E; 1 , N # 3 ou v=1,

k=2, N=3.

Une réponse partielle à ce qui se passe dans le cas non linéaire pour v &#x3E; 1 y

N~3 et B;==1y k~2 est contenue dans le contre-exemple de E. Giusti-M.Miranda: i

le vecteur u = est une extrêmale pour ?1 # 5 , appartenant à [W2(1)  ]N, de la
x

fonctionnelle

et si on considère le problème de Dirichlet pour une boule K (0) et pour u° = x x, r 

le vecteur en question est sa solution unique pour N assez grand. L’extrêmale 
lxl

u satisfait au système non linéaire
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où la condition d’ellipticité

est valable. D’autre part, on a

qui est une condition plus faible que les nôtres , cf. § 2 et le livre [6].

En vertu des contre-exemples cités y il faut chercher une autre définition du

problème de la régularité pour quton obtienne un résultat affirmatif dans le cas

v &#x3E; 1, N S 3 (ou h &#x3E; 1 ~ B~ 1 y ?1 # 3). Ceci est fait dans le travail de Ch.

B. Morrey ~25~ 9 où l’auteur considère les systèmes généraux mentionnés ci-dessus.

Le résultat principal : sous les conditions de croissance pour corres-

pondantes aux nôtres et sous la condition dtellipticité :

où
v .

V = 1 + E=i= 1 E lal =x i i=1 lal=Xi
l’auteur démontre pour la solution faible de (1.1) avec f == 0 que U.EC BÃ.iJ (D)

r 1. 

(Xj)

avec D = 11 - Z où Z est un sous-ensemble localement compact de mesure nulle.

§ 2. Les hYPothèses.

Le domaine Q en question est à frontière lipschitzienne. Pour les estimations

au voisinage de la frontière, on supposera la frontière ôQ indéfiniment continû-

ment différentiable s Õ = 0 U On désigne par 5(~) l’espace des fonctions

réelles, indéfiniment continûment différentiables dans Õ et par le sous-

espace de 1(flÙ) des fonctions à support compact. La notation usuelle

est utilisée. On introduit W(k) (-0,) , ltespace des fonctions réelles, dont les
ID 

-

dérivées au sens des distributions jusqu’à l’ordre k sont de puissance m-ème

sommable sur Q, muni de la norme
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On note par la fermeture de D)(Q). Désignons par W(k)(Q) pour k en-

tier négatif, m dual de W(-k) (Q) (toujours 1 + 1 = 1 dans la suite) avec latier négatif, le dual de 1 (toujours - + n- = l dans la suite) avec la
norme du dual. On désigne par l’espace des fonctions k-fois continûment

différentiables dans Q et par C (k) (5) l’espace des fonctions k-fois continûment

différentiables dans avec la norme habituelle. On note encore par 

ltespace des fonctions, dont les dérivées jusqutà ltordre k sont u-höldériennes

dans à, 0  ~ ~ 1 , muni de la norme

Nous utiliserons les théorèmes d’ immersion de Sobolev:pour un exposé complet, cf.

par exemple le livre [12] de l’auteur.

S oit Q~E~ .N~2. un domaine à frontière lipschitzienne. Alors

E (Q) - Wn(k )-(Q). Si km  c L (o) algébriquement et topologiquement avec

k . Si 1 1 k q m N, Inapplication identique de Wm (k) (Q) dans L (û) est
q m N ’***’ q m N 9  ’"*2013"""’ 7- B de 

m L (Q) est

complètement continue . Si kn = N ,Wm(k)(Q) c Lq(Q ) algébriquement eÉ complètement continue. Si algébriquement et touologiauement

W(k oo et l’application identique de dans L (o) e t

complètement continue. Si km &#x3E; N et = k - N si k - Nm  1 03BC1 si

k-S-==1 et u =1 si k-N&#x3E;1, alors W(k) (Q) c C, etm 
-~ 

t20132013~~ ~ - ~. --. --- ’

topologiguement.

Désignons par a i(x,Gi) les fonctions continues pour xEQ,-ooGioo, 
Nous supposerons toujours dans la suite :

où M est un sous-ensemble des indices ljl ~ k, contenant les indices ljl = k .
Soit pour m ~ 2 : s
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pour 1  ID  2 :

Désignons par p(x) =- dist Pour les estimations à l’intérieur du domai-

ne, nous supposerons encore : si m ~ 2y

et pour 1 m2 :

Pour les estimations jusqu’à la frontière, nous supposerons si m ~ 2 :

et si 1m2:

et (2.9).

Une fonction u de W (k) (Q) sera la solution faible du problème de Dirichlet.
m

dans Q ,

(où 6j signifie la j-ème dérivée selon la normale extérieure à si pour
an J 0(k)chaque VEW(k)(Q) 1

et si

Désignons par on supposera :
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(On désigne les constantes positives par le même symbole c. Si nécessaire, on

utilisera des indices. Les constantes ayant toujours la même signification dans ce

travail, seront indiquées par ’B(l ~ ’Y2 ,...) et on supposera l t existence des dérivées

continues pour xEQ, t ’.1 i «oo. On supposera s

Si m = 2, nous supposerons pour les coefficients ai (x, Gi) une certaine pro-
i j

priété qui permettra de considérer une classe homotopique des opérateurs non-linéaires.
Pour ceci, désignons par

et en posant

Le cas m &#x3E; 2, régularité à l’intérieur du domaine : posons or = E 21] 9 h==20132013.
Nous supposerons l’existence de fonctions (a. (x, C j,l), l = (l1;l2 g,... lo),
définies pour xE5, 0 ~l~ 1, continues dans leur domaine de défi-

j T

nition ainsi que les dérivées

et telles que a.(x,Gj.,0) = Enfin, on supposera :i j i j 
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Exemple 1. Si nous cherchons le minimum de la fonctionnelle

dans la classe des fonctions satisfaisant {2.1 ~~ 9 nous obtenons pour la solution,
la condition (2.12) avec f. = 0 et avec 

-

Si nous posons

nous obtenons les conditions (2.18) ~ ( 2 . 2 1 ) .
Le cas 1  m  2, régularité à du domaine : nous supposons l’ exis-

tence de fonctions a.(x,Gi ,X) définies pour [ç . j  m , 0 # X # 1 , continues
ij j

dans leur domaine de définition ainsi que les dérivées

telles que et telles que



29

Exemple 2. de l’exemple 1. Si nous posons
ij 

nous obtenons (2.22), (2.25).

Pour la régularité de la frontière, nous remplaçons les

conditions sur les a.(X,cj,X) - par les suivantes : nous supposerons encore l’exis-

tence de fonctions aî(x ,L.-, j,p) 9 définies pour lGil oo, 2 ~03BC~M (ou
1 j j

m ’ &#x3E; # 2 si 1m2), continues dans leur de définition avec les déri-

vées

telles que

et telles que

Exemple 3. On prend ai de l’exemple 1. Evidemment, il suffit de poser

En ce qui concerne l’existence de la solution du problème (2.12), (2-13),
on peut utiliser le théorème de Leray-Lions ou de F. Browder9 cf. [3J et [2].
Pour notre but, le théorème suivant nous suffit, y cas particulier du théorème

de Leray-Lions.
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LEMME 2.2. Soit V un espace de réflexif’ séparable, A ( v) un opérateur
borné de V duàns V’ (son dual), continu de tout sous-espace de V de dimension

finie dans VI faible. On suppose la coercivité :

où ( , ~ dési e la dualité entre ~’ et V’. Alors si A(v) est monotone

(v~-u, A(v) - A(u)) ~ 0 (strictement monotone 2 (v--u, A(v) - A(u)) &#x3E; 0 pour

u =v , l’opérateur A es t (biunivoque et Âl est borne).

Pour compléter les résultats de Leray-Lions, nous démontrerons leur théorème sans

supposer la séparabilité de Vo

THÉORÈME 1 (Leray-Lions) , Soit Banach réel 2. réflexif 9 A (v) un

opérateur borné de V dans Ve, continu de tout sous-espace de V de dimension
finie dans Vt faible. On suppose (2Q30). Alors slil existe une application bor-

née de V x V dans V i , soit A(u,u) = A(u) uEV et

vérifiant les conditions :

(i) pour chaque v de V l’application v - A(V’u) est continue de toute droite

de V dans VI faible et pour u , veeV A(v,u)~0,

(ii) si u - u dans V et si (1.1 -u, À(u ,u ) - A(u,u )) - 0, alors pour v
n n n n n ~ ~ ’"

un - u et dans VI, alors 
-- n - n n

alors À est surjectif.

Démonstration. Soit F c V un sous-ensemble de dimension finie, FI son adjoint
et désignons par la dualité entre ~’, F7. Définissons A F de F dans FI

par u,vEF - (u,A v). Si on introduit dans F et FI une base biortho-

gonale, soit alors

et on peut identifier F, F~ avec ltespace euclidien Ex et A F avec un opérateur

T. continue de E 
X 

dans E X. On voit que = 

x x E FF

Soit f~V?, = ~v,f ~ et ~~ ~~~~, , engendré par De la coercitivité de

T il s’ensuit Inexistence de R &#x3E; 0 ~ tel que R (x,Tx) - (x,l1) &#x3E; 0.

Il s’ensuit que la boule 2R se transforme en elle même par la transformation

où E &#x3E; 0 est assez petite D’après le théorème de Brower, il existe
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un point fixe, soit alors = 11. Désignons par UF le point correspon-

dant dans F. Nous avons alors pour v de F ~

De (2.30) il s’ensuit que ~u~ ~ c. Désignons par A. l’ensemble de tous les

sous-espaces de V~ de dimension finie et par

et par sa fermeture dans la topologie faible. Evidemment, la famille des VFo
possède la propriété des intersections finies. L’espace V étant réflexif ~ la

boule unité est faiblement compacte d’aprés le théorème de Eberlein-Smuljan. Il

s’ensuit que 
--

ntest pas videt donc il existe

Soit VEV et l’ensemble contenant v et uo . D’après un théorème de

Kaplansky, V W1 étant faiblement précompacte, il existe une suite u de v F, 9o n o

telle que Comme u est une suite bornée, l’est aussi, alors
n n n

on peut supposer que ut. Vérifions que
n

Mais d’après (i) C à 0, donc
n

pour chaque v de V. Si nous posons v = Uo - Àw,À &#x3E; 0 y de (2,33) il
s’ensuit que (w,f - A(uo - et en faisant tendre X vers 0 ~ on en

déduit 0 pour do V, dt où 1 ~assertion.
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Il stensuit aisément, sous nos hypothèses, l’existence unique de la solution du

problème (2.12), (2,13). En effet, définissons T(w) de Wo(k) - (oW (k)m), en posant
m m 

1

Posons

L’opérateur T est continu de B~~L:) dans ~ m ) et en vertu de (2.17) ou (2.21)
ou (2.25), où l’on pose l = 0, est strictement monotone et en vertu de (2.14) ou

(2.18) ou ~2 .22 ~ , coercitif. Nous avons utilisé

Remarque 2,1 . ,

est une norme équivalente dans 
m

Remarquons que beaucoup d’estimations et d’énoncés qui suivront sont valables pour

la dimension 2 quoique le but du travail soit N = 2 ; nous les démontrerons

dans ce cas pour N général.

§ 3. auxiliaires et sux la solution faible des équations linéaires.

Considérons un domaine borné à frontière â(Y indéfiniment différentiable,

A.., = 1 j / = k des fonctions de L e réelles , telles que
ij 1 00

Soient

tion

une solution faible de léqua-

Soit Nous avons

THÉ OREME 2. Soit w une solution faible de (3-3), w de W(k)(o). Alors , existeTHÉORÈME 2. Soit w une solution faible de (3.3), (j) de W2 (k) (o) . Alors il existe

deux constantes y3 (p) &#x3E; 1, Y4(p) &#x3E;1 telles que our p satisfaisant

on a



33

Démonstration. Supposons d’abord- Aii EC(o) et soit Õ.. = 1 pour i = j et

ij 
t 

à .. = 0 pour et WEv’}2 k «(0/) une solution faible de l’équa-
ij 
tion

avec p = 2+po Nous avons diaprés un théorème du travail li °1 :

On a trivialement

diaprées le théorème de Riesz-Thorin, cf. par exemple A. Zygmund [11], nous
obtenons pour 2 ~ P 2 2+p : ô

En supposant pour le moment A. ~(~~ la solution w de (5 e6) appartient à

p (e) d’après le travail [10] déjà cité,, Nous avons pour 

Nous avons
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alors on en tire, en tenant compte de (3*9) s

Si nous posons

nous obtenons pour 2 ~ p ~ 2+p 1 p satisfaisant (3.~.~ :

dtoà (3-5). Nous pouvons maintenant trouver tel que 0 en

1n 
~-3 ~J 2J

mesure, c et que la condition (3-1), (3.2) soit satisfaite. Soit w
ij 

la solution correspondant à n. Du théorème, démontré dans le livre de l’auteur

[12]9 il s’ensuit et le théorème.

LEMME 3.1 . Soit 1 q- 9 0 # 1 é 1c-1. Alors pour et t i! l = 1 on a :

avec

(3.12)

où

Démons tration. Soit la solution de l’équation

dans 0. On a d’après le travail [10] :

si nous posons = nous obtenons en vertu du lemme 2.1 l’asser-

tion.
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LEMME 3.2. Soit p &#x3E; N. Alors3.. o t (e’), p &#x3E; N. 

Démons tration. En vertu du lemme 2.1, nous pouvons supposer u de e (5-). Grâce

à une partition de l’unité et aux transformations régulières des cartes, on se ra-
mène au cas où 0’ = 1,x,,,,&#x3E; Pi et à l’estimation

Nous avons

d~où

Posons ty = z ; nous obtenons de (3.13) :

d’où la démonstration.

Nous utiliserons dans la suite une inégalité, démontrée dans un travail de
l’auteur [13] :

LEMME 3.3. Soit 0 à ôO lipschitzienne. fEW(l)(Q), 1  p  -, î un entier

(positif un entier positif. Alors
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§4. Les estimations des dérivées d’ordre k+1 dans, It.

Nous démontrerons un lemme étroitement lié aux théorèmes sur la régularité, du

travail de l’auteur [14] ; cf. aussi :fB1.I. Visik [1] etc. Considérons dans ce

paragraphe m ~ 2. Pour ~, un domaine à frontière lipschi tzienne, il est démon-

tré dans les travaux de l’auteur [15], [16], l’existence d’une fonction a(x) de

C(7)e équivalente à dist et d’une suite croissante de sous-

domaines £1 n telle que

chaque 00 n étant indéfiniment continûment différentiable et d’une suite de fonc-

n équivalentes à dist (Q, Q), telle que n n . n n n n

our et l D -1 n ° ~clo ll Î a ve c c  indépendant de n. Dés 
* 

parpour et 1 avec c indépendant de n. Désignons par
h = avec T à la î-ème place. Désignons par

Nous avons, cf. J. Necas [12] ou L. Nirenberg 1171 :

LEMME 4.1 Soit Q un domaine borné, k~1, p ~ 1. on a

avec 1 hl e t avec

Déplus

THÉORÈME 3. Supposons que les conditions (2J8)-(2.21) sont satisfai-

tes. Supposons encore (2.2~9 (2.5) ? 9

Alors pour la solution u ~2 , ~ 2 ~ 9 ~2 .13 ~ nous avons
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Démonstration. Posons pour

Posons

De (4.2) on déduit l’inégalité :

d’où

Il s’ensuit, en vertu du lemme de Fatou et du lemme 4. 1 t

Si nous faisons tendre 1 hl ~ 0 dans ~4,~.~ et après nous obtenons le

résultat.

CONSÉQUENCE q..~ . Sous les conditions du théorème 3 :

CONSÉQUENCE 4.2. On conserve les hypothèses du théorème 3. Alors 2013 ,
oxll =1,2...N, satisfait à l’équation linéaire différentielle : i
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En effet, il suffit de faire tendre T - 0 dans (4.2) : on peut trouver une

suite Tn - 0 telle que toutes les fonctions sous l’intégrale dans (4.5) convergent
presque partout. Si nous tenons compte de ce que les intégrales en question sont

équicontinues , ce qui résulte de ~~..4~, nous pouvons faire le passage à la limite
dans (4.2).

§ 5. Régularité à 11 intérieur du domaine, le cas m = 2.

Désignons par K d =  dl, K(xo) =  d, 2d = dist 

L(xo) =  ~d,d = dist Nous supposons dans tout ce paragraphe

Tirons d’abord quelques conséquences des énoncés démontrés au paragraphe 5 t .-

LEMME 5.1. Four ueW (1) (Kd), p&#x3E; N,n on a 

En effet, nous prenons pour Cf du- lemme 3.2, la boule unité K, ; (5 .1 ) s’obtient

par homothétie.

IM,IE 5.2. Soit 0~~~ k-1. Alors pour yE e (0) et

lil ( =~ on a

avec

, 1 1 1 (ic-1 ) () ( )N pour et 1 :5-:- p  - pour En effet,
on prend de nouveau pour (Y du lemme 3.1, la boule unité (5.2) s’obtient
par homothétie.

LEMME 5.3. Soit une solution faible de Inéquation (3.3) dans K. ~
Alors sous les conditions (3.1). (3.2) avec les notations du théorème 2, on a
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pour 2 2N y p satisfaisajit (3.4).pour 2 == p = N-2 ,p sa  satisfaisant (3.4) .

Démonstration. Il suffit de démontrer (5.3) pour d = 1 et après dfutiliser la

transformation xu = y. Dans ce but y on pose w = avec et X (x) = 1
pour lx! ::5 Î. Il résulte du lemme 5.2 que w satisfait à l’équation (3.3) avec

gi ELp(Kl), pour lesquels 
-

d’où le lemme en utilisant (3.5) pour K~ .

Nous sommes maintenant capables de démontrer aisément :

5.4. Soit u la solution du problème (2.12), (3 ·13~ q alors

avec

(5.5)

où

En effet, on part de ~4.5~ 9 on utilise (2.6) et (5.2) pour exprimer

moyennant g. satisfaisant (5.5). Pour les termes

on utilise l’estimation (2.15),  1,-n, conséquence 4.1 et encore une fois (5.2). Pour

les termes

c’est la même chose ~ i on utilise (2.~¡6), la conséquence 4.1 et (5.2). Poux les ter-

mes

on utilise (2.16), (..1) et (5.2).
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THÉORÈME 4. Sous les conditions mentionnées, et pour la solution u

du problème (2.12), (2.13), 9 il existe p1 &#x3E;2 tel ue

La fonction k est p, höldérienne avec 03BC=1.-2 sur chaque compact

de Q.

Démonstration. L’inégalité (5.6) résulte du lemme 5.4, du théorème 2, de ltappar-
tenance de 2013 à et du lemme 5 .5 , utilisé pour Pi satisfaisant (5 .4) ,

Dxl, 
2 (n) et du lemme 5.3, utilisé pour Pi satisfaisant (3-4),

compte tenu de (2-17a), (2.17’b). Il faut encore tenir compte du lemme 2.1.

On désigne par

où

On a

CONSÉQUENCE 5-1. Sous les hypothèses du théorème 4, En effet, il suf-

fit de tenir compte de (5.6), de liappartenance de u à W2(K)(Q) et de (5.1).

§ 6. Régularité à 11 intérieur du dom -aine 1 le cas m &#x3E; 2 .

Nous obtenons immédiatement

6.1 , Soit f(d) une fonction réelle non négative, définie pour 0  d  do

et telle 
- 

ue 0

Soit pour

B~X 1, on aAlors 9 on aors pour l-, == 

1 

Soit u (l)EW (k)m-Th (Q),l = (l1,l2,.... la solutionEW 
m-T h 2 lb"* T 9

unique du problème (2.12), (2 .13), correspondant aux fonctions Sup-
i j

posons dans ce paragraphe g (2.1)e (2.2), (2-4), (2.6), (2.18)-(2.21).

Nous avons avec les notations du paragraphe 2 :
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LEMME 6.2. Pour u(B) 2

En effet, pour u(k), on a

d’où de (2.18)

maintenant, il faut utiliser la remarque 2 01 g alors compte tenu de (6.2) et de
1 t inégalité de Young :

d~où on en déduit alors l’assertion.

On obtient encore

lEMME 6.3. Pour

Démonstration. On procède comme dans la démonstration du théorème 3. On sait

d’après ce théorème que (6.3) est valable avec c(k). Maintenant, on pose avec
u = u(k ) :
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Si nous notons dans cette démonstration.

et

nous obtenons pour J ltinégalité

Après avoir utilisé 2ab ‘ £2 a2 + ~ 1:fJ, nous obtenons de 6.4 une estimation pour7
J. On peut faire tendre T - 0, Ch = et on obtient finalement

(6.2) avec on en vertu du lemme d-e Fatou et du lemme 6.2 9 du lemme 2.1 et de

~ 6 . ~ ’b ~ , Après, il suf f i t de faire tendre n ~ 00 .

Désignons par

Supposons

g5 (K(xo) ) , on a

et posons Alors pour

avec
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Démonstration. Partons de (4.5). On raisonne maintenant comme dans la démonstra-

tion du lemm,e 5.4 ~ 1 pour 1 ~ intégrale

c’est la même chose. Pour

on estime

on utilise la conséquence 4.1 avec m = 2y ce qui découle de (6.3) et de l’inéga-
lité (5.2). Pour les autres intégrales, on procède comme dans la démonstration du

lemme 5-49 en tenant compte de (6.3), et en utilisant l’estimation ij
ceqofed*

Si il existe  Y5(l1,..., lt-1) tel que 2our

En effett cela résulte du lemme précédent et du lemme 5.3, appliqué avec Y1 = Y, e

~2 = Y;p - compte teiti du lemme 6.2 et 6.3 et de la conséquence 4..

LEMME 6.6. Supposons

Alors 

on a

Démonstration. Posons

et (6.1) :
Il résulte de (6.3)

Maintenant , on tire de (6.6) :
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Soit Nous obtenons de (6.8), (6.9) :

Nous avons avec Y5 du lemme 6.5 :

Il résulte de (6.1)

alors de l’inégalité ~~.1 ~ 9 utilisée pour L(xo) et de (6JO)-(6.12)~ il s’ensuit s

Maintenant, il résulte de (6.8) et du lemme 

avec un q &#x3E; 2 fixé. Il s ’ensuit avec

On a évidemment en vertu du lemme 2,,’l

on tire de (6,15), (6.16) et de (5.1 ~ finalement

(6.17) étant évident pour Jal ~l  k~1$ en vertu du lemme 2.1 , on obtient de (6.13),
(6.17) finalement 2
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d’où

Si nous prenons a tel que

nous obtenons l’assertion du lemme 6.1.

THÊOIËME 9 N = 2 , 11 la solution du problème (2J2). (2.13). sae.
suppose 2, I 2.2 (2.4), (2.6), (2.18) -(2.21). On ose o =[m 2], h = m-2 o,

il existe % &#x3E; 0 telle que si 1&#x3E;:= 2 + cl A2-m , alors‘I. w C1 A2-m d 9

et

Démons tration. Prenons ~ = (~l 1 4 0 6 l~cy) avec À1 &#x3E; 0~...~a &#x3E; 0. On a

m-ah = 2 , alors d’après la conséquence 5 .1 ,

Faisons tendre - 0. En verttl de (6.1), (6. 3), de la remarque 2 .1 et du lemme

2.1,ltensemole u~~,~ g ·.. ,~. ~-1 ~~~ ~~) est compact pour chaque

Q, C O. Nous pouvons alors trouver une sous-suite (on la note encore lon, et on

pose ln= (Àl t...,03BBo ) , U = ,...,B0)) convergente w dans 

pose l = (l1,
.. * , 

un k n presque n dans Q. Nous avons pour 
M (k) (Q ’ )

et 
’ 
~ k presque partout dans Q. Nous. avons pour Î.i C’ z

Nous pouvons alors passer à la limite dans (2.12). Mais il résulte de (6,1) et du
lemme de Fatou que et il résulte encore de (6.1) qu’on peut supposer

(convergence faible dans W (k)m-Th). Cela entraîne 2.13. En vertu de
n m-Th 

"

l’unicité de la solution du problème u en question, w = 10). Mais
il résulte de 6.7 que u(l1,...,l-1. Il suffit maintenant d’appliquer
notre raisonnenient à ,...,lo-1,n,O) et on obtient finalement pour la solution u
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Pour u, on a (4.5) et le lemme (6.4), d=où (6.6). Mais il résulte de (6.6) et
de (6.20) l’inégalité , (6.19) ; d’autre part, en vertu du lemme  2.1 : de (6.20) l’inégalité (6.19) 9 dtautre part, en vertu du lemme 2.1 o (Q),
d’où (6.18) et (6.19A

§ 7. Régularité à l’intérieur du le cas 1  m  2 ,

Soit u (k) 9 0  X 1, la solution unique du problème (2.12)9 (2Soit u (l) EW2(k) (Q), 0  À. ~ 1, le, solution unique du problème (2.12), (2.13),
correspondant aux coefficients Nous supposerons dans ce paragraphe
les conditions ~2.1 ~ 9 (2.3), (2.5)~ (2.7), (2.22)-(2.25).

LEMME 7. 1. Pour 

Démonstration. On a

de (2.22)

(7.1), compte tenu de l’inégalité de Young et de la remarque 2 .1, Pour oôte-

nir (7.1b), il faut tenir compte de l’inégalité, valable pour N = 2 :

Pour démontrer (7.2), il suffit de s’apercevoir quton peut placer (p = 
dans (4-5) (nous savons de (4 .1 ) que ci 2k -u 11~ (k) (~2». Si nous posons 

Il Xi
2
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nous obtenons de (4.5) :

il faut maintenant tenir compte de (7*1) 9 ~7·~ ~~ et de (7.3~ q d’où on en déduit

(7.2).

Nous avons avec la notation du lemme 6.4 :

IEMME 7.2. Pour CPE e on a (N = 2 ) :

avec

Démonstration On part de (4.5). On raisonne maintenant comme dans la démons-

tration du lemme 5.4 é pour l’intégrale 
-

c’est la même chose. Pour

on utilise

alors

pour estimer les intégrales
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on utilise 11 inégalité (2.24), (7~2), le lemme 5.2 si jj)=k et pour le cas

tj!ky on utilise l’estimation

et on raisonne comme pour ~7.6~ ~ en utilisant pour 1 il 1  k le lemme 5.2.

Nous obtenons maintenant

LEMME 7.5 . Il existe y6 &#x3E; 0  tel ue pour p = 2 + y6 m-2 :

En effet, cela résulte du lemme précédent et du lemme 5.3, appliqué avec

~l =Yi A:2, ~2 == Y2 , compte tenu de (7.1) et de (7.2).

Nous avons maintenant §

LEMME 4 Soit x +2(1+k) m-1 . Alors pour  u(X) en question on aLEMME 7.. Soit X = m-1 - 

U IB. en - question on a

Démonstration. Posons

Il résulte de (7.1a), (7.1b) et (7.2) que

Nous avons avec p du lemme précédent (avec ~y 6 assez petit).

1 a ,Soit 1 p =a p + b 2 a &#x3E; O. Nous obtenons de (7.8) et (7.7) :
P1 p 2

Puis , nous tirons de (7.1)



49

alors, an tire de 1 t inégalité (5.1) et de (7.9), (7.10) :

d’où

S i nous posons a= m-1 -tJ. nous posons a = 6(2-M) nous QI) obtenons

on en déduit facilement l’assertion en vertu du lemme 6.1.

N ous avons finalement

THÉORÈME 1  m  2 , N= 2 , u la solution du problème (2.12). (2.13),
On suppose (2.1), (2.3), (2.5), (2.7), (2.22)-(2.25). On ose d = t dist 

Alors

Il c » 0 tel ue si = 2 + c 2-m alorsIl existe c&#x3E;0 tel Que si p = 2 + c Ad 9 9 alors

et

Démons tration. Dtaprès le théorème 4, on a

Mais il résulte de (7.6) et du lemme 7.4 que

Il s’ensuit qu10n peut trouver une suite X -~ 0 telle que u(&#x3E;, n) --+ w dans

W (k) (Q’) pour chaque Q, D03B1u(ln ) -D03B1w, lal~ k presque partout dans Q .
m n

On peut faire le passage à la limite ?,n ---&#x3E; 0 dans (2.12) et supposer que u(ln) - W
dans et dans En vertu de ltunicité de la solution du problè-

m p d-

me en question, w = u et on tire de (7.15) l’inégalité (7.13). Ceci nous donne

(7-14)9 d’où (7~2) en vertu du lemme 7.4.
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§ 8. m -’- 2 9 N - 2 ·

Nous supposons dans ce paragraphe ôQ indéfiniment continûment différentiable,

(2.1), (2.8), (2.9), (2.26)-(2.29) et la condition :

(8.1) (2.26)-(2.29) sont invariantes par transformation orthonormale des cartes.

Nous pouvons décrire la frontière 5Q au voisinage de chaque point de àn à

l’aide d i une fonction indéfiniment c ontinûment différentiable. Pour fixer les

idées, nous supposons définie une telle fonction dans un système de cartes carté-

siennes (que nous notons encore x) :

avec a de (Kr = 1 (  rl). Supposons que les points r,avec a de 
r  r = {x))lx’lx’lr -

a(x’ )  a(x’)+r appartiennent à Q, tandis que les points ri

a(xt) - r  xN  a(x~) sont hors de 0, et désignons l’ensemble ixtl  r,

a(x~~  xN  a(x~~+r par Vr. Supposons que

Dans V , définissons’les dérivées dans la direction parallèle à 5Q " :
r

pour xçv, ce seront les dérivées dans le plan orthogonal à la direction

Pour fixer les idées, nous choisissons ces directions en prenant pour elles :

Posons

LEMME 8,~ , u(g) la lution du problème (2.12). (2J3) corres-
pondant au Supposons que

Alors

Démonstration. (8.1a) résulte immédiatement de (2.26). Soit et défi-

nissons pour XEVr: h(x)=  (O,000 ,O t O,O..., a(x’+h’) -a(x’)) avec T à la

~-ème place et h~ ~ (0~...94,~r,Og~" ~0~. Nous avons d’après (2,’t2)
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et par le passage à la limite T -) 0, on obtient 1 .*

L’intégration par parties nous donne

En vertu de l’hypothèse que UEC(1c) (5) n W2(k+1 ) nous pouvons prendre
et en particulier: e 

~o 2

Nous obtenons de (8.3)? si nous posons

et l’assertion.

LEMME 8.2 fi Supposons toujours Alors pour r assez petit

Démonstration. Désignons par
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il = ( 0 , * .. , 0 ,k) , v = 2‘~ posons g(x)
Pour j oq _. k-1, V, nous avons pour ÇpE gb (0) :

Pour 9 on a 1

Il résulte maintenant de (8.1) y compte tenu des inégalités (2.26)-(2.29) et du
lemme 3.3 , en posant 1

d’où 8.4.

On a évidemment s

CONSÉQUENCE 8.1. Pour u(4), on a

LEMME 8.3. Supposons Alors il existe Y5 &#x3E; 0 tel ue

Démonstration. Dans posera
r

Il résulte de (8-3), où nous posons pour que w satisfait à une

équation linéaire, à savoir en vertu de (8.1), (8.7) y (8.8) et du lemme 3~
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avec

Nous utilisons maintenant le théorème 2 pour

et obtenons, en posant 1’inégalité

Maintenant, on procède comme dans la. démonstration du lemme 8.2 : posons

Il résulte de (8.5)~(S.6)~(6.10)~ compte tenu des inégalités (2.26), (2.29) et du
lemme 3*3~ en posant

d’ où (8.9) en vertu de (8.10).

LEMME 8 .4 . Supposons Alors

et il existe q &#x3E; 2 tel ue

Démonstration. Soit

Il suit de (8.7) que
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De (8.9) et de (8.8) il s’ensuit que

avec

Soit On obtient :

Il résulte de (8.14), (8.15) et du lemme 3.2 :

D’autre part, en vertu de (8.1) :

alors il s ’ensuit , en vertu de ~~.~~~’ si nous posons a

(8.12) résulte de 8.17 et de (8.7)~ (8.13) de (8.9).

THÉORÈME 7. Soit Q un domaine "Corné à frontière indéfiniment continûment diffé-

rentiable, N=2 et supposons que les hypothèses (2.1), (2.8) , (2.9), (2.26)-
(2.29).,(8.1) soient valables. Alors la solution u du problème de Dirichlet

(2.12), (2 , 1 § ) appartient à avec po&#x3E; 2, donc à avec(2.1 2), (2.13) appartient à W (k+1) p. (Q) a avec donc à C (k) -- (Q) avec  ----

03BC=1-2 p .

Démonstration. Considérons dtabord le cas m = 2. Soit

pour 0 # t Z 1 pour !il + 1 j 1  2k et 8 .. = 1 pour i = j ,
ij ij j 

 Ôij = 0 pour i = j, lil=)lj= k.  Evidementp les conditions (2.26)-(2.29) sont
valables unri.rormément par rapport à t 9 soit u(t) la solution du problème (2.12),
(2.13). Poux t = 0. l’assertion est vraie en vertu des théorèmes bien connus

pour les équations linéaires , cf , par exemple [10]. Désignons par N, l’ansemble

des t pour lesquels (8.13) est valable avec q = po . N est fermé: si to

et pour les t 
n (8.13) est vala’ole, il s’ensuit, en vertu du lemme 2.1 , que u(t)n n
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est un ensemble compact dans W(i~:)(0). On peut en extraire une suite, encore notée

u(t ), telle que u(t ) --+ u dans t , m (.Q). B Ils s’ensuit en vertu de l’unicité de
n n m

la solution du problème pour t que u(to) == u, d’où l’énoncé. N est ouvert g

en effet, soit t.cN et désignons par A l’opérateur de [W(1) (0)]X dans

(k+l) (Q) , où x est le nombre des indices l k, PO la solution du pro-W (k+1) po (Q) où x est le nombre des indices k, donnant la solution du pro-

blème. Soit et désignons par B l’opérateur de 

dans défini par 8..Diu. Soit 
Po

PO ~- 

) -ij -T7- 1J

L’opérateur ABu + u(to) pour / assez petit transforme U, dans lui-même.

D’autre part, il est faiblement continu étant un espace réflexif, séparable,
po

on peut utiliser le théorème de Schauder "faible", cf. J. Schauder E 21 ] 9 d’où
ltexistence du point fixe u. Evidemment u = u(t). Il faut encore voir que ltes-

timation (8.13) est valable avec Cl = po. Mais cette estimation est valable avec

q du lemme précédent. Il s’ensuit que les coefficients a ij dans (8.9)t sonte e que les coeff icients 
a 

dans (8.9)t sont

höldériens. Il résulte alors du travail [10] que (k+1) ~ c. Mais llapplica-
tion du procédé, basé sur le lemme 5.3 ci-dessus nous Wp donne finalement ltesti-

mation na priori" (8.13) avec p.. Il s’ensuit que N =  Oil &#x3E;, d’où la démons-

tration dans le cas m = 2. Si m &#x3E; 2 , considérons 4E  2,m &#x3E; et les solutions

u(~). pour g = 2 l t assertion est vraie. Maintenant, on raisonne comme

ci-dessus, en posant D = a . ( x , D ugg)g d’où la démonstration.
1

Remarque. Sous les hypothèses mentionnées et encore avec a.. = aji pour
ij ji

on peut démontrer par la même méthode, avec les modifications correspon-

dant au paragraphe 7, le théorème 7 pour 1  m  2.
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