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SUR IA REGUIARIT DTS SOLUTIONS FAIBLES
DES EQUATIONS ELLIPTIQUES NON-LINEAIRES

rar
Jindrich NEGAS (Prague)

§ 1. Introduction.

Considérons un systéme elliptique d'équations aux dérivées partielles pour
le vecteur inconnu u = (u&,u,,a..,u ) et cherchons une solution faible apparte-

nant au produit W des espaces de Sobolev : W = t[w(xr)(n), i<m<o, Q
1

étant un domaine borné de l'espace euclidien EN Comme d'habltude, on note
; |1]
1
aXl ..Oa)ﬁ

Le systéme est de la forme

a1 . .
(1.1) ’ >I: (-1 pRP,phe) - £, C 1,2y

HEN

T
ou sous forme intégrale
Vv . .
(1.2) J = = Dy ai(xDlujax =] o.fax, € BE) .
Q r=1 zlgéxr Q

Considérons le probléme de Dirichlet : on se donne encore u°e¢W et on cherche u

de W satisfaisant (1.1) ou la forme intégrale (1.2), tel que

/, 4 o
~ . Y
anﬂ anﬁ

sur la frontiére adQ pour £ = O,1,...,Xr-1, j% étant la dérivée selon la norma-

le extérieure.

Les problémes fondamentaux sont 3
I. Existence, unicité, dépendance continue des données.
IT. Régularité de la solution faible.

III. Existence des solutions trés faibles et leur régularité.

En ce qui concerne la question I, 1la partie concernant l'existence et ltuni-
cité est résolue d'une maniére satisfaisante, cf. par exemple M.I. Vidik [1], F.E.
Browder [2], J. Leray-J.L. Lions [3].
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Pour la question II, dont nous nous occuperons, on peut la considérer comme une
question classique, formulée par D, Hilbert comme son 19e probléme et étroitement

liée avec la position du probléme et par 14 avec la question I.

Si nous nous bornons & l'étude des solutions faibles, nous pouvons donner

1'apercu suivant de la résolution de ce probléme, & savoir la démonstration que la
v 1! o . z .

solution appartient a “%C(Xr)’w(g) stil stagit de la régularité & l'intérieur du
Tr=

domaine ou a )

Vv (XI‘ oM _

T @)

r=1

st'il stagit de la régularité jusqu'a la frontiére :

[5] Ch.B. Morrey, 1939, N=2, v

1V

1 (pratiquement v = 1), Xp =1, m=2.

Y

[4] E. De Giorgi, 1957, Nz2, v=1, x=1, m=2,
(7] 0.A. ladyzenskaja-N.N. Uralceva 1959, N=z2, v=1, y=1, 1<m<o

[7] 0.A. Iady?enskaja-N.N. Uralcevae 1959, N =2, v = 1 (pratiquement v = 1),

[6] Ch.B. Morrey, 1960, Nz2, v=1, x=1, 1 <m<=.,
[8] J. Necas, 1966, N=2, v=1, x21, m=2.
[9] J. Netas, 1967, N=2, v=1, x21, 1<m<o.

Le succes de la résolution du probléme pour une équation du deuxiléme ordre est
basé sur le théorime de De Giorgi-llash, cf. E. De Giorgi [4] ; voici la généralisa-
tion de ce théoréme par G. Stampacchia, cf. [18] : si u est une solution faible de

1'équation lindéaire

N 3 ou N
- £ =—(a,.,=)=f avec c|§®= T a ,E.E.,
i,5=1 9%3 1 0%y i,521 197173
N 0),u
aijEI&(Q)’ feLp s DT, alors u€C( @) .

Revenons au systéme (1.1). Formellement, on obtient de (1.1), en dérivant :

T r
v pe0 5 o0al . Ju of . . da
(1.3) DI 5 (=1)it DY( § DJ&f)=a;r_ 5 (J)PIDlgf
lil=x, s=1 Ij!éxs 3D f) L }1I§Xr A
aus
ce qui est un systéme lindaire pour Fyegll Pour m =2, ona
J
aai
5, e
3D vy

alors dans le cas v =1, x =1, on peut utiliser le théordme de De Giorgi-Nash.
Si m#£ 2, il suffit de ravoir que les premiéres dérivées sont bornées. Pour m Z 2,

on peut obtenir ceci & partir de (1.2) en posant
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ou A

1
i (¢

[«

5= !
‘P"';

oY
&N

avec o indéfiniment différentiable, o = 0, et en faisant tendre A - = 5 pour
les détails cf. E.R. Buley [20] ou J. Necas [19].

la méthode utilisée par Ch,B. Morrey dans son travail [5] est basée sur 1lles-
*
timation suivante : si dist (Kr(xo),aQ) =4d>0 7, alors sous les hypothéses du
travail en question, l'intégrale
b i e < A
j‘ » ¥ (Du )Pdx = c(d)r 0<X 3
K (xo) |ij=2 s=1 ®
p\o et
. . . (1) ,u A
il s'ensuit facilement que ueC “(Q) avec u = 5.
Ia méme idée est utilisée dans le travail de l'auteur [8] ; dans nos confé-
rences, nous reviendrons aux espaces ]'..p s D>2 et utiliserons un analogue du

théoréme de De Giorgi-Nash valable pour le cas v =1, x=k=1: si ud'»lz(k)(ﬂ)
AN

est une solution faible de 1l'équation

(1.4) © Dl(Ai ) = T lei avec fiel , p>2,
FI I A FAEA
si
w T §%= LA EE. Sy, T g
R I e N
(et ici pour simplifier si Aij = Aji), alors uewz(aK) @Q"), v Q'cQ'cq avec
p satisfaisant 2 <p=p. lheureusement, on ne peut pas

démontrer que p, > N pour N = 3, il existe un contre-exemple, cf. N.G. Meyers
[22]. On voit que le cas .m = 2, si on considére la régularité & l'intérieur du
domaine, est résolu par ce théoréme. Si 1 <m <», on peut démontrer une estima-

tion a priori pour C(K)(Q') et & partir de ceci on revient a 1'équation (1.4).

Nous nous occuperons dans nos conférences du cas N =2, v=1, k=1,
1<m<®, Pour les autres cas, cf. les livres déja cités de Ch.B. Morrey [6] et
de 0.A, ladyZenskaja-N.N. Uralceva [7].

0000000000000 CO00 000000000 000R0C0RBEEP0000C0006CEPCEEICRRLEECECIOCINOECGROIOIROIOEOCEOIONIOIEOEEOSIOSEOSERNIROSOONOQOROPEOECTDSHDO

Aprés avoir rédigé ces conférences, jlai pris connaissance des travaux de
E, De Giorgi [23], E. Giusti-M,. ifiranda [24], Ch. B. Morrey [25] (qui ne sont pas
encore tous publiés) qui complétent d'une maniére essentielle l'apercu ci-desscus.

E. De Giorgi montre que la fonction u = x]xla, avec

o.'=--1§[1 c—1l3, Nz )
J(2N=2)? 41

est une extrémale appartenant a [‘u"a('l )]N de la fonctionnelle

*) Kr(xo) = {x,|xx0]| <1} .
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N Ju N xx
[ We) = =Raw = KR —Ip, : ( By Jax
Q n=1 °%n hk=1 1% 9% nyk=1 %%

et satisfait alors au gystéme elliptique linédaire

N N

8u
z Z ( s ) = 0 ’ r = 1’ 2,0-0,N
g=1 1,321 OF; I 0%y
pour lequel la condition d'ellipticité
N N rs T s N N
5 9 %15 Zc 1 Z(g >
i,j=1 Tys=l 9 J s=1 i=1

est valable. Le vecteur x]x{a nlest pas borné au voisinage de l'origine.

On voit aisément, comme cela est remarqué dans ce travail, que la fonction
f(x) = lx|a+2 de W( ) n'est pas dans C( )b au voisinage de l'origine, quoi-
qutelle soit une extrémale de la fonctionnelle

N
fQ [((W=2)af + ¥ % ks Ly, g (=L y2 Jax.

n,Je=1 X dxpw n, k=1 axkax
f(x) satisfait alors & une équation du quatridme ordre
5 Dl(aiijf) -0,
ou la condition d'ellipticité s
LD eyEEiEce T g5
|ll=lJ§=2 ‘lt=2

est valable. Les contre-exemples de E. De Giorgi montrent que le procédé de linéa-
risation mentionné ci-dessus n%est pas applicable pour v> 1, N2 3 ou v =1,
kz2,Nz 3,

Une réponse partielle & ce qui se passe dans le cas non linéaire pour v > 1,
Nz3 et v=1, k=2 est contenue dans le contre-exemple de E. Giusti-lM.Miranda:
. 1)4N
le vecteur u = Tﬁ%’ est une extrémale pour N = 3, appartenant & [N; )] , de la

|
fonctionnelle

132 Jax

[0z el T (o, 4 i) o
Q i,j=1 Xi i,j=1 4] T2 1+§V aX

et si on considére le probléme de Dirichlet pour une boule Kr(O) et pour u’ = TET,
le vecteur en question est sa solution unique pour N assez grand. L'extrémale

u satisfait au systéme non lindaire

2 JT(y, 2By
-z 2-al(e, =2 ()
i=1 axl ’ axg

]
o

’ I‘=1,2,...,N
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ou la condition d'ellipticité

. aai T .8 o r

by by gi632¢ T 0% ()
=1 i,j=1 =1 i=
rys=1 1,J 8( ) r=1 i=1

est valable, Dlautre part, on a

N N aus
L st
ou, gl =1 9%y

qui est une condition plus faible que les ndtres, cf. § 2 et le livre [6].

En vertu des contre-exemples cités, il faut chercher une autre définition du
probléme de la régularité pour quton obtienne un résultat affirmatif dans le cas
v>1, N3 (ou h>1, v=1, Nz3), Ceci est fait dans le travail de Ch.

B. Morrey [25], ou llauteur considdre les systimes généraux mentionnés ci-dessus.
9

p . C s . T
Le résultat principal : sous les conditions de croissance pour a; , corres-

pondantes aux ndtres et sous la condition d'ellipticité :

v e 2 i
Tz z = (rc)eglz eV LB (g1
1,351 Jaf=x; [pi=xy 9C3 i=1 jof=xy

11

v .
V=1l+ T = g |,
i=1 ,al=xi

(x;)

1'auteur démontre pour la solution faible de (1.1) avec fr = 0 que uiGC * (D)

avec D=Q %2 ol Z estun sous-ensemble localement compact de mesure nulle.

§ 2. Les hypothdses.

Le domaine ( en question est a frontidre lipschitzienne. Pour les estimations
au voisinage de la frontiére, on supposera la frontiére o0 indéfiniment continfi-
ment différentiable : O = U 3Q. On désigne par 2(J) 1'espace des fonctions
réelles, indéfiniment continfiment différentiables dans { et par $H(Q) le sous-

espace de Z2({J) des fonctions & support compact. Ila notation usuelle
; 1]

D - i 2 i
1 N

oxX ...BX_N

est utilisée. On introduit Wék)(g), ltespace des fonctions réelles, dont les

dérivées au sens des distributions jusqu'd l'ordre k sont de puissance m=eme

sommable sur Q, muni de la norme
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! i m 1/1’11
{lu] = (I T |DMu(x)!Tax) .
W @) " Vo il
On note par W(k)(ﬂ) la fermeture de H(Q). Désignons par W( )( Q) pour k en-
tier négatif, le dual de WI(J k)(q) (toujours 15+ % =1 dans la suite) avec la

(k)(

norme du dual. On désigne par C Q) 1l'espace des fonctions k-~fois continfment

différentiables dans (Q et par C(ﬁ)(ﬁ) ltespace des fonctions k-fois continlnent
différentiables dans (Q avec la norme habituelle. On note encore par C(k) ()
1tespace des fonctions, dont les dérivées jusqu'ta l'ordre k sont p~-hdldériennes

dans (O, O <K =1, muni de la norme

&, (04
lluil (x) =max X ,Do{u(x) ;+ sup _ 5 10%u()-D%u(y) |
cH@)  xe Ja=k xAy,x,yed  Jol=k  |x-y|¥

Nous utiliserons les théorémes d'immersion de Sobolev:pour un exposé complet, cf.

par exemple le livre [12] de 1l'auteur.

IEMME 2.1, Soit O EN N =2, un domaine & frontiére lipschitzienne. Alors

)(Q) Si km <N W(k) @) cL (Q) algébriquement et topologiquement avec

a—= ;5 -%\TE . Si 21> 1 -% . l'appllcatlon identigue de w(k)(Q) dang L (Q)
complétement continue. Si km = N W(k) @) cL (Q) al er. uement et to olo i uement
pour chague q,1 = q <o et l'application 1dent1que de (Q) dans L (Q) est
complétement continue. Si km > N et p,-k—_ si k-—<1 p,<1 si
k - % =1 et p=1 gi k-~ g-> 1, alors W(k?(ﬂ) C(O)’M(Q) algébriquement et
topologiquement.

Désignons par ai(x,gj) les fonctions continues pour x€q, = © < ¢y <w, |j] =k
Nous supposerons toujours dans la suite :

3 < m-1
(2.1) Iai(xsgj)g =c(1 + ‘Z }C’J:) ’ 1T <m<o,
jeM

o M est un sous-ensemble des indices IJI = k, contenant les indices I'Jl =k .

Soit pour m = 2 :
(2.2) el ()
pour 1 <m<?2

(2.3) woei®) (@),

pour m =2, |i| =k :

(2.4) £iel, ()
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pour 1 <m<2 :

. LI
(2.5) £,¢L Q) F==1.

Désignons par p(x) = dist (x,30). Pour les estimations & 1'intérieur du domai=-

ne, nous supposerons encore : si m = 2,
of,
1 Do kPo 2N
(2.6) J’Q !fiJS }ax dx < ¢y2 < po <375 »
lij=k
et pour 1 <m<2 :
of. '
(2.7) Foo= ’axlim o ax <o .

Q 1=k

Pour les estimations jusqu'd la frontidre, nous supposerons si m = 2 :

(2.8) fiewl()l)(ﬂ), Po > 2 ,

(2.9) neec(E) she 5y \'IS;H)(Q) n wg”)(g) , B > Do
etsi 1 <m<2 ‘

(2.10) g ] ) ()

et (2.9).

Une fonction u de Wék)ﬁn) sera la solution faible du probléme de Dirichlet.

(2.11a) 5 (D)EHpte, ,p%) = ¢ (<) ple,
= * BE: ;
dans Q ,
aju 83110
(2.11p) e =, J=0,00a,k=1 sur A0
anJ \nJ

J
(on —é— signifie la j-eme dérivée selon la normale extérieure & o) si pour

dnmw mﬂx)ﬁﬂ

(2.12) [ = dva (x,Dlu)ax =] D'vf, dx
Q |i|=k Q 11;<k
et si
(2.13) U - uoewlgk)(cz) .
Désignons par V=1+ £ ¢ ' « Si m=2, on supposera :
aeM @
(2.14) N N R T S

|il=k ieM
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v

(On désigne les constantes positives par le méme symbole c. Si nécessaire, on
utilisera des indices. Les constantes ayant toujours la méme signification dans ce

travail, seront indiquées par v;,v,jses.) et on supposera 1l'existence des dérivées

da. da.
i
— —_—t = g

dx, * or. ij
7 OQJ J

continues pour xe{ , | gj{ <o o On supposera :

(2.15) |§;§(x, gj); =cV ,

(2.16) PR BPIERS

(2tie) " ii?:k 5? - |i;,§ji§k aij(x’ Ca)gigj =% [i?ék gi ’

I T LT gjﬁ(lizi:k ’YE, o<t

Si m # 2, nous supposerons pour les coefficients ai(x, gj) une certaine pro-
priété qui permettra de considérer une classe homotopique des opérateurs non-~linéaires.
Pour ceci, désignons par

= i
v, =t+xr Z jgl

A
T aeM
et en pOSaﬂ‘t }\. = ()\-1 9)\.2 geee ’KG) :

I Y
p RN ‘s . m m=2
Lle cas m> 2, régularité & llintérieur du domaine : posons g = [EJ s h= =

Nous supposerons l'existence de fonctions (ai(x, gj,x), A= (A Ay seeesho)s
définies pour xeQ, igjf <» , 0= A =1, continues dans leur domaine de défi-
nition ainsi que les dérivées

a. da.
i i

Q/

i

a, .
x, ! cj ij

Q/

et telles que ai(x,gj,O) = ai(x,gj). Enfin, on supposera :

(2.18) £ oa (X2 VS e -e
lij=x * gt Mo oE
oa.
. _ -1 _-h
(2.19) [ai(x,gj,x)] + ;gaf(x,gj,x)[ =c V" v,

e

. . L= -2 g=h
(2'20) Iaij(xs(“'d’)\)- = C Vm V}\ ’
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28
-2 _=h 5 = . = 2.~h - .2
(2'213') Y1 v V}\ _L gi = zl:” ai'(x’ga’)\)sigj = szm V)\ z./T'< 5i
ll‘=k -1 9 J §k lll:k
| 1 i ' I H
(2.21p) Ili*~ §;= Ba; 5 (xocyoh) = 2y 5060,,0))57;
i i
- 2 \8 3
=ywo( = gD = WE, 9 <1,
|i]=k |i]=k
Exemple 1. Si nous cherchons le minimum de la fonctionnelle

b

[ G+ 2 @PuR)?
Q jai=k
dans la classe des fonctions satisfaisant (2.13), nous obtenons pour la solution,

la condition (2,12) avec £, =0 et avec
2 -1
2
a.(x,¢.) =m(l + = (2 Ly oo
o o
Si nous posons
o !
d - 242 o 2 5 2y 2
a(ad ) =0+ 2 )7L T 2 T,
J i=1 * lo|=k *
= || =

€y :a}=k
nous obtenons les conditions (2.18) (2.21).

régularité & 1'intérieur du domaine : nous supposons l'exis=-

e cas 1 <m<2,
tence de fonctions ai(xggj,X) définies pour xeQl, [gji <=, 0

dans leur domaine de définition ainsi que les dérivées

aai aai .
9 - ;3 2
axz gj ij

telles que ai(x,gj,o) = ai(x,gj) et telles que

2. y=n Y = ‘]2—]11 z ‘.im-—Cg 9
( 22) iizék Qla'l(xsgas\) Gl A ieMl(ol! 2
' , ] laai )v < Vm—1 v2—m
(2.23) :ai(x,gj,X). + iS;;(x,gj,K | =¢c N
_ ~2 2=
(2.24) !aij(x,(;a,)\)! =c V™ V}Z\ n
- T a, .(x,ga,)\)gigj

EIFFI

-2 Da
= Y Vm Vi ™ . z g; 9

zi!ék

2 - = <=
(2.25) wVE W oz og= %€
i |i], 3=k

=N=1, continues
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(2.25b) 855 =84 ii] = ]3| = k
Exemple 2, ai(x,gj) de 1l'exemple 1. Si nous posons

m

d " 2
a(Z00) == [0+ = )0 +2 = ¢2)
1R oG EE PESS

m
1-3

nous obtenons (2.22), (2.25).

Pour la régularité de la solution jusgu'a la frontiére, nous remplagons les

conditions sur les ai(x,gj,x) par les suivantes : nous supposerons encore l'exis—

tence de fonctions ai(x,gj,p), définies pour xeQ, igji <w, 2=y =m (ou
n=Ep=2 8si 1<m<2),

vées

continues dans leur domcine de définition avec les déri-

a . a.
i o 1

o/

il

x, 30, i)

S

o/

telles que

ai(ngjsm) = ai(xsgj)
et telles que

(2.26) L C.a(x,0.u) = T Q.!H -c
lifsc LT §i§=k| a ’
. aai V“'1
(2.27) Iai(xsgj#’)l + lBXIQ, X,Qj,u)l =¢c 9
- -2
(2.28) laij(x,gj,p)g =c VW ’
-2 -2 2
(2.29a) Ylvu T &%= X a, (x,C W), = sz“‘ L g,
) col T o i R |
lij=k = i],[3[=x M J |i|=k
L 1
(2.29v) i b la,. +a..)e.0. =6vw( = €)2 & )3,
ST R R
mz 2 (aij =aj; pour li|=[j|=k, m<2).

Exemple 3., On prend a; de ll'exemple 1., Evidemment, il suffit de poser

.
2
ai(Xst,u) = 11(1 + l;g) Qi .

En ce qui concerne l'existence de la solution du probléme (2.12), (2.13),
on peut utiliser le théoréme de Leray~Lions ou de F. Browder, cf. [3] et [2].

Pour notre but, le théoréme suivant nous suffit, cas particulier du théoréme
de Leray-Lions.
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IEMVE 2.2, Soit V un espace de Banach, réflexif, séparable, A(v) un opérateur

borné de V dans V' (son dual), continu de tout sous-espace de V de dimension

finie dans V! faible. On suppose la coercivité :

(2.30) 1n )

(| vi]»e Y ’

ot (, ) désigne la dualité entre V et V'. Alors si A(v) est monotone
(v=u, A(v) = A(u)) 2 0 (strictement monotone : (v-u, A(v) - A(u)) > 0 pour

u#v), llopérateur A est surjectif (biunivogue et A™! est borné).

Pour compléter les résultats de Leray-Lions, nous démontrerons leur théoréme sans
supposer la séparabilité de V.

THEOREME 1 (Leray-Lions). Soit V wun espace de Banach réel, réflexif, A(v) un

opérateur borné de V dans V!, continu de tout sous-espace de V de dimension

finie dans V! faible. On suvpose (2050). Alors s'il existe une application bor-

née de VxV dans V', soit A(vyu), ztelle que A(u,u) = A(u) pour ueV et
vérifiant les conditions :

(i) pour chague v de V 1l'application v - A(v,u) est continue de toute droite
de V dans V! faible et pour wu,veV(u-v, A(u,u) - A(v,u)) = 0,

(ii) si w ~u dans V et si (U.n-ou, A(un,un) - A(u,un)) - 0, alors pour v
de V: A(v,un) —~A(v,u) dans V!,

(iii) uw —~u et A(v,un) ~y! dans V!, alors (un,A(v,un)) - (u,vt),

alors A est surjectif.

Démonstration. Soit F <V un sous-ensemble de dimension finie, F' son adjoint

et désignons par (v,f)F la dualité entre F, F'. Définissons Ap de F dans F?

par u,vel s (u,.AFv)F = (u,A v), Si on introduit dans F et F' une base biortho-
gonale, soit ei,ezj,i, 3=1,2,00esy 5 alors

X p X .
u= X X.e. , = ¥ y.e.
jml TR j=1 99

et on peut identifier F, F! avec l'espace euclidien FX et AF avec un opérateur

. 3 — 1At
T, continue de EX dans EX . On voit que (x,Ty)EX = (u,AFv)F , d'ou

I|x|!._900 HXE!
Soit £V, (v,fF)F = (v,f) et WE , engendré par fp « De la coercitivité de
T il stensuit 1'existence de R > 0, tel que pour ||xjj 2R (x,Tx) - (x,1) > O.
11 s'ensuit que la boule ||x| = 2R se transforme en elle méme par la transformation

x - e(Tx~N), o e >0 est assez petit. D'aprés le théoréme de Brower, il existe
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un point fixe, soit x, , alors 'I‘xF = Tl Désignons par Up le point correspon-

dant dans F. Nous avons alors pour v de F :

(2.51) (vsing) = (v,5)

1A

De (2.30) il s'ensuit que lu,: = c. Désignons par A l'ensemble de tous les

sous~espaces de V, de dimension finie et par

V., = U
Foc Fep
et par VFO sa fermeture dans la topologie faible. Evidemment, la famille des VFo
possede la propriété des intersections finies. L'espace V étant réflexif, la
boule unité est faiblement compactc dlaprés le théoréme de Eberlein-Smuljan. Il

s'ensuit que

ntest pas vide, donc il existe
Uoz N Vo .
FocA Fo
Soit veV et Foeh, 1l'ensemble contenant v et uo . D'aprés un théoreme de
Kaplansky, VF étant faiblement précompacte, il existe une suite u de VF ,
<] ]
telle que W, = Uo . Comme u, est une suite bornde, A(uo ,un) lt'est aussi, alors

on peut supposer que A(uo ,un) -~ut, Vérifions que

(2.32) (un - Uo, A(un,un) - A(uo ,un)) -0 .

En effet, (un,A(un,un)) = (un,f) - (uo,f), (W0 A(un,un)) = (Wo,f). Dtaprds (iii):
(un,A(u.c> ,un)) - (wo,u') et enfin (uo,A(uo ,un)) - (uo,u') 5 tout cela entraine
(2.32), Alors pour les v en question s A(v,un) - A(v,uo) et d'apres (iii) :
(un,A(v,un)) - (WosA(Vyuo))e Om a

c, = (un - v,A(un,un) - A(v,un)) - (U = v,f = A(V,u0)).

Mais dfapres (i) C =0, donc

(2.33) (te = vof = A(v,u0)) Z 0O

1%

pour chaque v de V. Si nous posons Vv = Uo = AW,A > 0 , WweV, de (2,33) il
stensuit que (w,f = A(uo = AW,U0)) = O et en faisant tendre A\ vers 0O, on en

déduit (w,f~A(uo)) Z O pour chugue w de V, d'ol l'assertion.
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I1 stensuit aisément, sous nos hypothéses, l'existence unique de la solution du
probléme (2.12), (2,13). En effet, définissons T(w) de Wék) - (ﬁék))' en posant

(v,2w)) = [ = Dy ai(x,Djuo + DIw)dx .

Posons
(v,£) = [ Dlvf.ax .
R =
Ltopérateur T est continu de Wék) dans (ﬁék))' et en vertu de (2.17) ou (2.21)
ou (2.25), ol 1'on pose A = 0, est strictement monotone et en vertu de (2.14) ou

(2.18) ou (2.22), coercitif. Nous avons utilisé

Remarque 2.1,
( - = D% ax)!/m

est une norme équivalente dans ﬁéF).

Remarquons que beaucoup d'estimations et d'énoncés qui suivront sont valables pour
la dimension N = 2 quoique le but du travail soit N = 2 ; nous les démontrerons

dans ce cas pour N général.

§ 3. Lemmes auxiliaires et lemmes sur la solution faible des équations linéaires.

Considérons O, un domaine borné & frontiere 30 indéfiniment différentiable,

Aij’ |il = ij =k des fonctions de L_, réelles, telles que
(341) vy & &= s Ay 8. Sy, I €,
[ij=k * fgl=lgi=e M lifj=k *
L 1
(3.2) | = EA,. -A e =vo( = g2)%( T B, &<,
FEE R N T TR

Soient fieLP(O’), il =k, p>2 et ws\ﬁe(k) (0), une solution faible de 1%équa=—
tion

(3.3) 2 (-4, . plw) = (-0)K = Die, .
L ij .
= i|=k

Soit p = 0. Nous avons

THEOREME 2. Soit w une solution faible de (3.3), o de ﬁ§k)(5). Alors il existe
deux constantes v,(p) > 1, vy,(p) > 1 telles que pour p satisfaisant

(3.4) pl1 = log (2y, = (1-0)vy) = log (2v, = 2(1-9)y,))/1log v,] = 2,
on a
i 1- 2

i p 3 2 § 1/
(3.5) Ty |2 Pl = i w P(J‘miknfilpdso i
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Démonstration. Supposons dfabord Ay & (®) et soit 655 = 1 pour i=J et
855 = 0 pour i#j, |i|] =|j =k et We\ﬁ(k)(e’) une solution faible de 1'équa=-
tion
(3.6) DoAY pNsy D)= 3 (<)l
4] 5]

avec gieLp(O’), P = 2+p. Nous avens dfaprés un théoréme du travail [10] :

1 1
(3.7) ¢ = phPPen? s OIS g, |51Pax)>*e .
O |i]=k |-k

On a trivialement
(3.8) = (Dix-r)zdx)“lf =( = gaid_x)% ,
o |i|=k o |il=k

d'ol, dtaprés le théordme de Riesz~Thorin, cf. par exemple A. Zygmund [11], nous

obtenons pour 2 = p = 2+p 3

1 1
i DD - (1"—)/(-2+p P, \D
(3.9) (f = |t wiFax)? = o (p) 5 |elfax).
O |ij=k O |i|=k
En supposant pour le moment A, c<(8), 1a solution w de (3.6) appartient a
(k)(er) dtapres le travail [1 O] déja cité., Nous avons pour eg (0) 3

(3.10) [ z §ilexPDdex
Oii=jdik
=f % (“la—y;IAij)Dl@Ddex 1z Dlefiax .
o |i]=|il=k o |il=k
Nous avons
( 'z (61 - Y tA j)DJm'lde) /®
o |ij=k |-k 7
= sup [ £ (6;5- v5tA )b DJwdx
£ Rt a1 O 1E[=30k ’
Eif=kl JJL ,(0)
= (1—j—ﬁyl)supf Z H“)( = (ph w)g)gdx
Y2 o lil=k = ij=k
pt 1 p 1
. o) [ :
= -0 g (2 )P T RF)%a0P
Y O [ij=k ¢ |i|=k

(1= (-e)v,) (P"Z)/P(f 5 ipiwlpdx)vp ;

o |il=k

1A
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alors on en tire, en tenant compte de (3.9) :

: S£.)
(3.11) (f _ 2( }Dlm%pdx)1/l) = cl(p)( )/ 2+ng (‘f 5 'filpd}c)1/p
¢ iil= O |i|=k
1
+ 01(9)(1- /- 2+p L-_elh) (f z k’Diw§pdx)p .
ll"

Si nous posons

/(1= 5= 1/(1-—"‘
= ¢ (p 2+p S s va =c (p) 24p 5

nous obtenons pour 2 = p = 2+4p , p satisfaisant (3.4) :

v —5(1_ !1—92\(1) 1 - (1=9)vs

3 Yo

A

-

9

dtot (3.5). Nous pouvons maintenant trouver A €&(0) tel que AlJ Aij en
mesure, ‘A l = ¢ et que la condition (3.1), (3 2) soit satisfaite. Soit W
la SO.LU.thIl correspondant a Al Du théortme, démontré dans le livre de ltauteur

[12], il stensuit que w, > dans wg(k)(cy), et le théoréme.

IEMME 3.,1. Soit 1 < gq <=, £1=k-1, Alors pour pe$(0) et |i! =1 ona s

It

[ ppgax=] = Dlyg. ax
ol H J

o [3f=k
avec
(3.12) ey {L =c gl s
q
o
%2%,%1 i (k=)g<N et 1=p<o gi (kl)a>N.

Démonstration. Soit udﬁc(lk)(@’) N KﬂféZk)(O’) la solution de 1l'équation

z. D21u=g

|i}=2k

dans O. On a d'aprés le travail [10] :

il Il (21’)(01) = 5!g!lL (01) H

si nous posons (-1 )k'ﬂ'])lﬂu = gj s nous obtenons en vertu du lemme 2.1 ltasser-

tion.
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LEMME 3.2. Soit uews)(e‘), p> N. Alors

1.-

1
ol gy = oD P

M=

E I8 PR e [ juG)jax .

Démonstration. En vertu du lemme 2,1, nous pouvons supposer u de &(®). Gréce
4 une partition de 1'unité et aux transformations régulidres des cartes, on se ra-

méne au cas ou O = {x,|x| < Tyxy > 0} =P et & l'estimation

Ly 1
u(0)] = (El) Pon(f 2 |Pax)P + cf |u(x)|dx.
i=t B 5%

Nous avons

1 W
u(y) -u(0) =] = — (ty)y dt ,

0 i=1
dtol
: -1 -1
(3.13) [0(0) = (mesP )™ | u(y)dy| = (mesp, )™ ([ = (J“ | (ty) |7, |at)dy.
D
Posons ty = z 3 nous obtenons de (3.13) :
lu(0) ~ (mes P. )"1 f u(y)ay!
| 1 )
2
1 N
-1 |
= (mes B, ) ‘f —%—f—:ﬁ 5 au (z)||z|dz
0t P, i=l
¥
=1 u ! dt
= (mes P, ) Z (z)[ |z]dz [ e
i=1 |z] ¢
S-S Ol
T N mes B i=1 ‘
Pl
N R LS I S
so(z | } (z)lpdz)pq r \P7 ar) P,
i=1 °B,

d'ou la démonstration,

Nous utiliserons dans la suite une inégalité, démontrée dans un travail de
1tauteur [13] :

LEMVE 3.3, Soit Q & oQ lipschitzienne, fewl(f)(ﬂ), 1 <p<wo, £ un entier
ositif ou négatif), Vv un entier positif. Alors

llf,iw(,&) =c MZ:\) HDafI;‘ (2=v) * cflf}|w(z_\,) .
b p
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§ 4. Les estimations des dérivées d'ordre k+! dans L.

Nous démontrerons un lemme étroitement 1ié aux théorémes sur la régularité, du
traveil de ltauteur [14] ; cf. aussi M,I. Vidik [1] etc. Considérons dans ce
peragraphe m = 2, Pour Q, un domaine & frontidre lipschitziemme, il est démon=-
tré dans les travaux de l'auteur [15], [16], 1'existence d'une fonction o(x) de

e(@) nc(@), équivalente a4 dist (x,00) et d'une suite croissante de sous-
domaines Qn de Q ﬁn 2y,  telle que

ng’l Qn =0

chaque aQn étant indéfiniment continfiment différentiable et d'une suite de fonc-
tions o ngQn) 2 C(ﬁn) équ%ia}entes 3 dist (Qn,aQn), telle que On(x)-e o(x)
pour x€Q et |D Gni = c!cn] | avec ¢ indépendant de n. Désignons par

h=(0y000y0,70,044,0) avec T & lo f-2me place. Désignons par

au(x) = 7 u(xen) - 1 u(x).
Nous avons, cf. J. Necas [12] ou L, Nirenberg [17] :

IEME 4,1, Soit O un domaine borné, Q' c(d'cq, kz1,pz1. ona

2l 0) » e o)

pour chague Q! avec |h| < dist (0*,3Q) et avec

“Ahpﬂw(k-1) Ec.
Y

u = ¢flul ’
(% Hw1(>k-1 )(Qt) 'iu'IW§k)(ﬂ)

ol ey, . = oo ol o gy el gy )
wp «) Q i @) wp Q)
e el %1% dans w1(>k-1 @ .

THEOREME 3, Supposons que les conditions (2.18)-(2.21) avec A = 0 sont satisfai-

tes. Supposons encore (2.2), (2.5) ,

of,
2 (=22, Kax=e, wmwz 2.
Q lilsk %

Alors pour la solution u du probléme (2.12), (2.13) nous avons

(4.1) [ o0+ 5 pa@D™ ¢ hu&)Pac s .
Q oM ‘ HESY
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Démonstration. Posons pour X, v(x) = gikAhu(x) et pour X{Qn : v(x) =0 .
On a v€'ﬁ{ :(Q). Soit we\ﬁ( )(Q) avec dist (supp w,3Q) > 0. On déduit de (2.12)

(4.2) [ q a; (x+th (1=5)D%u(x) + tD%u(x+h)dt)D w(x)DJAhu(x)dx
Q |i ,|,J|<k 0

+I I aal (x+th, (1-t)D%u(x) + tD*u(x+h))dt)D w(x)d.x
Q 11 sk 0 axJ

- = Diw(x)Ahi;(x)dx .
Q |ilzk -
Posons
W 2k . (63 [0 }m—2
=v, J=[ o b (J (1 + = |(=t)Du(x) + td%a(x+n) |} "dt)
Q |i]=k aeM

(@ au(x)Vax .
De (4+2) on déduit 1'inégalité :

n 1
(4.3) J= clJ%HquJ(k) ¥ c2i|u,i$(k) e, (fQ grzlkli§§k(Ahfi(X))2dx)§.(J§+ ilutlw(k)) ’
il m : m
d'old
m
i 2 r 2k 2 43)3 |
(4.4) Z = 04(,]uﬂw(k) + (JQ 5 li?ék(Ahfi(x)) ax)® + ”ullw(k))

I1 s'ensuit, en vertu du lemme de Fatou et du lemme 4.1

oe

2k oY m~2 i
f o, 1+ = |D u(x)i) r (DTu(x))? .dx
Q oeM Ji]=k+1

A

c(n) .

Si nous faisons tendre |h| » 0 dans (4.4) et aprés n -
résultat,

, nous obtenons le

CONSEQUENCE 4.1. Sous les conditions du théordme 3

2kl o
J oz oM ph)™? ax = o, Nz3,
Q |i]sk
2kp
I X GmlDlu[pcbcéc, 1=p<>, N=2,
Q |i|sk

CONSEQUENCE 4,2, On conserve les hypotheses du théorme 3. Alors %&:— ’

L =1,2,00s,N, satisfait & 1'équation lindaire différentielle : £
“4.s5) [ = amij(x,,Dc‘u)ch.oDj U gy
Q ji;,]3]=x 2
i da
=/ z po—=ax-f —=(x,0%)D%p ax .

2 |i]=k Q |1;<k %,
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En effet, il suffit de faire tendre T —» 0 dans (4.2) : on peut trouver une
suite T, © telle que toutes les fonctions sous 1l'intégrale dans (4.5) convergent
presque partout. Si nous tenons compte de ce que les intégrales en question sonk

équicontinues, ce qui résulte de (4.4), nous pouvons faire le passage & la limite
dans (402)‘

§ 5. Régularité & 1'intérieur du domaine, le cas m = 2.

Désignons par Kj = {x,]x] <d}, K(xe) = {x,]x-x0| < d, 24 = dist (x0,00} ,
L(xo) = {x,{x~xo| < 4,4 = dist (%0,0Q)}. Nous supposons dars tout ce paragraphe
(2.1), (2.2), (2.4), (2.6), (2.14), (2.15), (2.16), (2.17a), (2.17b).

Tirons dfabord quelques conséquences des énoncés démontrés au paragraphe 3 3

IEME 5.1. Pour “GWS)(Kd)' p>T, ona

N 1 1 N
== A== N
] T -
(5.1) w@)] =ca PEp Pz [ | |Pax)® + od Y jux)]ex .
: i=1 Kd i Kd

En effet, nous prenons pour O du lemme 3.2, la boule unité XK ; (5.1) stobtient

par homothétie.

LEMME 5,2, Soit geLq(Kd), 1<qg<w, 0=,

]
A

HIA

k-1. Alors pour e H(Q) et

|i] =4 ona
| degax=[ 3z Dl g ax
K Ky lil=k
avec
ket + -1% - ?I\i-
(5.2) el =cd &l ,
I, (%) L, (&)
N k=1 < >
% == o= pour (k-1)g <N et 1 =p<o pour (k-1)g 2 N . En effet,

on prend de nouveau pour O du lemme 3.1, la boule unité X, . (5.2) stobtient
par homothétie,

LEMVE 5.3. Soit wewg(k)(Kd) une solution faible de 1'équation (3.3) dans Ky o

Alors sous les conditions (3.1), (3.2) avec les notations du théoréme 2, on a

1 p) 1
. - 1= £ -
2
(5.3) ( 5 DY Pax)? = =< P e( T |£.|Pax)P
JﬂK Qi]-.:k' l y ‘1,..6}'Y1 4 J‘K ll|=k| ]_’

g‘. ' d N N
2 2ll| i 1 k+ = - '2"
+ v (] n a It @wra)fa P4
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pour 2 = p = ﬁ%g , p satisfaisant (3.4).

Démonstration. Il suffit de démontrer (5.3) pour d =1 et aprés d'utiliser la
transformation %;- = y. Dans ce but, on pose W = yo avec xePH(K) et x(x) =
pour {Xf = %, Il résulte du lemme 5.2 que W satisfait a 1'équation (3.3) avec

gieLp(Eg), pour lesquels

l-—&

1

. 1
(= |glPax)? = c[(f £ 5P+ (5 @WPeF],
K li|=k o |il=k K |i|=k
d'ol le lemme en utilisant (3.5) pour K, .

Nous sommes maintenant capables de démontrer aisément :

LEMME 5.4, Soit @ed(K(xo))s, w la solution du probléme (2.12), (3.13), alors

(5.4) IK( s ) a. .(x,0%)plppd & a“ dx I z Di¢gidx
Xo [

avec

(5.5) losls (o) = @ -,

dist (x0,00) = 24 .
En effet, on part de (4.5), on utilise (2.6) et (5.2) pour exprimer
8f

z Di@ = ax
J11{(;&,) HES ax

moyennant g; satisfaisant (5.5), Pour les termes

I -
= = D pdx g
K(xo) |i]=k 3%,
on utilise l'lestimation (2.15), la conséquence 4.1 et encore une fois (5.2). Pour
les termes

T a ptp I %& ax
K(xo) fif,l3|zc ™ 2
l3f<k
clest la méme chose : on utilise (2.16), la conséquence 4.1 et (5.2). Pour les ter-
mes

i 5 a.. DY DI & ax,
K(xo) [if,ljl=x 9 0%y
Pit=k,rij<k

on utilise (2.16), (4.1) et (5.2).
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THEORMME 4. Sous les conditions mentionnées, pour N = 2 et pour la solution u
du probléme (2.12), (2.13), il existe p > 2 tel que

(5.6) & =0 a8 = 1 aist (x0,00) .

i (k+1)

W (X(x0))

B
Ia fonction Dlu,li} =k est p holdérienne avec u =1 '%l sur chague compact
de Q.
Démonstration. L'inégalité (5.6) résulte du lemme 5.4, du théordme 2, de l'appar-

tenance de %% a ng (Q) et du lemme 5.3, utilisé pour P, satisfaisant (3.4),

£
compte tenu de (2.17a), (2.17b). Il faut encore tenir compte du lemme 2.1,

On désigne par

(%) () - (k) " .
¢, (@) = {ueC (Q),g)llg a* flu‘lc(k)(ﬁd) <=},
Q, = {xcq, dist (x,00) > 4} .
On a

CONSEQUENCE 5,1. Sous les hypothdses du théoréme 4, uEC1(1:1){(Q). En effet, il suf-

fit de tenir compte de (5.6), de llappartenance de u & Wzk)(Q) et de (5.1).

§ 6. Régularité & 1'intérieur du domaine, le cas m > 2.

Nous obtenons immédiatement :

IEMME 641. Soit f£(d) wune fonction réelle, non négative, définie pour 0 < d < do
et telle que pour o =

sup a%f(a) < .

0<d<do
Soit pour ¥ =0, 0=A <1, o=

£(2d) = ¢ a~ £(@) + o, a7X.

Alors pour { = -1-)_5_-)? , oOn a

0
sup  A”F(d) = c(p,xshscy ) o
0<d<do
Soit u(x)e\nfﬁzh(fz) s L= (0g ,AZ,...,xT,o,...,o),>\1>o,...,>\,r>o, la solution
unique du probléme (2.12), (2.,13), correspondant aux fonctions ai(x,g.,}\). Sup=-

posons dans ce paragraphe : (2.1), (2.2), (2.4), (2.6), (2.18)=(2.21).

Nous avons avec les notations du paragraphe 2
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LEMME 6.2, Pour u()) :

(6.1a) r = (1=1)n V;hdx = o(h shaseeesh )
Q T
(6.1b) f 1+ = ]Dau(x){)m~(T-1 )b V;hdx = c(h) yeeesh 1), N=2,
Q |o|=x T ™

En effet, pour u(A), ona

f > Dl(u-uo)fi dx = I Dl(u-uo)ai(X,Dju,/\)dx N
Q

2 by
Q jizk i

HES
dtol de (2.18)

(6.2) jQ y(r=1)h b g phu]Bax = oy ,---,KT_1)(iluil:(k) +1

A
T ieM o
1oL
, P (Tl ~-h i
b el o VETEYE 5 pplajta) P
Wm Q T ieM

) 5

+ [|umuo] 5z
| o'iwg(k) jilae M

maintenant, il faut utiliser la remurque 2.1, alors compte tenu de (6.2) et de
1%inégalité de Young :

~1-AD! 1 1
ab = Jl-)-(sa)p + %n(s 15)P, ot
< m %
J‘Q Vax = oy seees-h )01+ g|uon_w(k) + (jQ veax)elik ufigglb
m

+ ]i?:k 1£5ly, l!uof}we(k)) ,

1
atol (fQ Vax)® = o)y peeesh 4 ), on en déduit alors 1l'assertion.
On obtient encore

IEMME 6,3, Pour u(A), N =2 :

(6.3) [ o2 ym2(=Dh b5 R0 Pax = ol hyeeed L)
Q N EYp 71

Démonstration. On procdde comme dans la démonstration du théoréme 3. On sait

d'aprés ce théordme que (6.3) est wvalable avec c¢(A). Maintenant, on pose avec
u=u(})) :



42 J. Netas, Sur la régularité..., § 6

1
J = f gik(f (1+ 3 I('l—-t)DQ'u(x) . tDau(x+h)])m'2'(T'1 )h
Q 0 aeM

A T [(-t)0%(x) + 0%a(an) as  (Draa(x)Pax .
T et |i|=k
Si nous notons dans cette démonstration
V=1+ T {(1-t)D"u(x) + tDu(x+h)|
el
et

Vo =1+ 3 | (=8)D%u(x) + tD%u(x+h)| ,
T T Q’eM

nous obtenons pour J 1'inégalité

(644) J

A

1 1 1
SO yeeerh B () v Ry 5 (0% wpax)?
Q 0

n T o=k

+

]
v2=(=h y=hany o (0% u)ax
FQH(Y . N )(agék-1( o,

1 1 1
+ ﬁ(j‘ﬂ(jo yoe=(7=1)b V;Td‘h)d:xF :

! a2=(1=1)h-n % et ([ ya-(r=1)hyh
¥ (j‘Q(jO Ve thTdt). }ozék-‘l (2%, ) ax) .JQn(vam hVKTdt)dx

i
+ J%(f by (Ahfi)zdx)% + (] by (DaAhu)zdx)%.(f I (a,8; Pax)* 1.
Y0 il=x Q, |o|=k-1 Q) jij=k
Aprés avoir utilisé 2ab = €°a° + lcgoz , nous obtenons de 6.4 une estimation pour
Jeo On peut faire tendre T -0, (h = (Oyeee,y7505.44,0)) et on obtient finalement
(6.2) avec o, en vertu du lemme de Fatou et du lemme 6.2, du lemme 2.1 et de
(6.11b). Aprés, il suffit de faire tendre n - .

Désignons par W(k) = {u, sup 'lu! ) 35 < )
“9X a>o0 ylk
‘@ (Qd)

IEMME 6.4, Supposons u(A )€W°Ek>)((§2) ot posons A, =1 + ] (x) . Alors pour

' w Q
ve B (K(xo)), on a o d)

i j ou i
(6.5) | z a. (x,D"u,. )07 DY =& - i £ Dy g, d
K(xo) ji|=|j|=k 9%)  “K(xo) |i|=k i

avec

' " -3 - -k ,m=2
”gilin (K(Xo)) = C(/sl ,...,AT-.‘ )d Ad .
Q
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Démonstration. Partons de (4.5). On raisonne maintenant comme dans la démonstra-

tion du lemme 5.4 : pour 1l'intégmsle

5 of3
r Z D o ax ,
K(xo) |i|Zk %y

clest la méme chose. Pour

%8y 4
[ I =D dx j
K(xo) |il=k )
on estime
da .
| i) o qme2
aX = C Ad_ V ’

on utilise la conséquence 4.1 avec m =2, ce qui découle de (6.3) et de 1'inéga~

1ité (5.2), Pour les autres intégrales, on procéde comme dans la démonstration du
-2

lemme 5.4, en tenant compte de {6,3), et en utilisant l'estimation = oV ’

la; ;|
lJ'
Ceq.fede

IEMME 6.5, Si u(x)gw)gkz(g), il existe ys(?\1 ,...,)\T_1) > 0 tel que pour
s
2em+(T=1)0 .

p = 2 -+ 'Y d.
' "k"'1 m=2
(6.6) G = oQy yereih_ ) 422
p
En effet, cela résulte du lemme précédent et du lemme 5.3, appliqué avec v, = v
Vo = Yo o A’;I-"Z-(Tq )h, compte temu du lemme 6.2 et 6.3 et de la conséquence 4.7,

LEMME 6.6. Supposons
u(h)qu(ki(Q) avec ¥ = 214k N = 2.
]

h 9
-3
Alors en posant
qul = sup dx‘%[uii
T@) Toa @)
A% ]
on a
(607) |!u(>\-)”w(k)(Q) é C(>\l ’>\‘2 90009}\-1__1) .
X% m_.h
Démonstration. Posons m(x) = (1 + (D(’l(u()\)))e)4 4 | 11 résulte de (6.3)
‘ol =k
et (6.1) ° i~
(6.8) m = ol yenesh,_q)a7E

WS )(K(Xo ))

Maintenant, on tire de (6.6) :
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. dm p , (dm D % k1,0 (% -1)
(609) (J L(xo)(Ig}?l I + IS-J-CB ll)&() = C(>\1 900‘,)\1__.1) Ad .
Soit 11;1 = % +-;9 yatb =1, 0<a <1, Nous obtenons de (6.8), (6.9) :
1 i
~ 3a(z -1)
amm o, 2w < &1, %2
(6‘1 O) (rL(Xo)(‘aXl I + ,a:x-g ;Pl )d-x)pl‘: C(A’l geee 9>\T_1 )d Ad .
Nous avons avec Vs du lemme 6.5 3
_ o ~1)h
(6411) pZE2+ 8 Ad-m+(T ) .
I1 résulte de (6.1)
1 . _
(6.12) 2/ ‘m(x)|ax = o(hy yeeeh )T,

L(Xo

alors de 1'inégalité (5.1), utilisée pour L(xo) et de (6.10)-(6.12), il s'ensuit 3

38.(2 -1)+(m-2-(7-1)h)3
(6.13) ‘m(xo)| = c(hl,...,)\Tn,‘)a'ld-k-‘l Ay 2 s .

Maintenant, il résulte de (6.8) et du lemme 2.1 :

L ~k+ 2 -1

q -
(6.14) (fK . )Im(x)gc'l‘d.x)l = ce()y R S )a

o
avec un q > 2 fixé., Il s'ensuit avec u = % - -T—QE
L (=k+ 2 )l-
(6.15) (IK( ) l ? k[DO[u(x)fU'q d_x)uq = 0()\1 ""’XT—T )d q B .
Xo dl=
On a évidemment en vertu du lemme 2,1
1

(6.16) (j' X (Dc‘lu(x)lsdx)s = c(s,n ,...,hT_1) pour 1 =8 <,

K(Xo ) I Ol‘ =k=~1

on tire de (6.15), (6.16) et de (5.1) finalement

(6.17) 1+ = |p%(xe) )
for] =le=l

I

-(1+k
C(Kl 90‘ L] ,XT-'] )d ( ) .

(6.17) étant évident pour ]oz] < k=1, en vertu du lemme 2.1, on obtient de (6.13),
(6.17) finalement :

m h m h
22 c(r A )erlaee] a2 ~irt)g zaee2)
26. = 1 900y T-1 v e} d
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dtol
. -i. _--.-1:1‘ ’1_(1-.2-)%;+—L-)-2a 3'2 a o m
A2d = C()\l ’...’)\.T-,] )a d. . .'Ld 9’ W= é’ - T E .

S5i nous prenons a tel que

1- g + 2a(m2) = 3(1- D) ,

nous obtenons llassertion du lemme 6.1.

THEOREIME 5. Soit m>2, N=2, u la solution du probléme (2.12), (2.13). On
suppose (2.1), (2.2), (2.4), (2.6), (2.18)=(2.21). On pose o = [-gl],h = %}2- '
d =% dist (x0,3Q), IL(xe) = {x, x| <3d}, A

Q4 = {x, dist (x,00) > d4}. Alors

=1 + lluil

a “C(K)(ﬁd) 9

-(2(1+))/(1- B)

(6.1 8) ”U.” d ’

®y - °
Q)
il existe ¢ > 0 telleque si n =2 + ¢ Ai-m, alors

~k=1=(2(14k) (m~2))/(1 - 'S‘)

6.1 il =c ;
(€19 : "wlgk*”(mxo)) :

et

(6.19)" wr@) ,  w-1-2

Démonstrotion. Prenons L = (A yesssho) avec A > Ogeevsho > 0. Onoa

m~ch = 2, alors d'aprés la conséquence 5.1,

“(Ufwf,ki(ﬂ) avec  x = 2(1+k)

h L]
-3

Faisons tendre Ag - 0. En vertu de (6.1), (6.3), de la remarque 2.1 et du lemme
2.1, 1tensemvle u(); peverk g ,7\0_11) est compact dans ka (Q') pour chaque

Q' € Q. Nous pouvons alors trouver une sous-suite (on la note encore xgn et on
pose A" = (), ,...,kcn), u = u(ny ,...,kan)) convergente vers W dans W(k)(:).‘)

et Daun - D ’ :oz: = k presqu: partout dans Q. Nous avons pour M C Q! 3
1

J’ ;ai(x,:ojun,xn)]dx =0 _J" Vax = c(ﬂ’)u(M)E .
M i

Nous pouvons alors passer & la limite dans (2.12). Mais il résulte de (6.1) et du

(k)

lemme de Fatou que weW ~(+=1)n et il résulte encore de (6.1) qu'on peut supposer

i
w W (convergence faible dans T‘".n(ffﬂrh)' Cela entraine 2.13, En vertu de
1tunicité de la solution du probléme u en question, W = u(d; ;A 5eee)h 1,O). Mais

2 o=
il résulte de 6.7 que u()\; seserh g ,O):\'IOS]‘;)((Q). I1 suffit maintenant d'appliquer

notre raisommement & u(\, peeesh g ,,0) et on obtient finalement pour la solution u
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(6420)

qu =c
il “\1(1{) .
@ 9%

Pour u, on a (4.5) et le lemme (6.4), d'ot (6.6). Mais il résulte de (?.g) et
o vas k
de (6420) 1tinégalité (6.19) ; dtautre part, en vertu du lemme 2.1 : ueC’ @),

atou (6.18) et (6419 "

§ 7. Régularité & 1'intéricur du domoine, le cas 1 < m < 2,

Soit u(k)e\‘l’ék)(ﬂ), 0<A=1, le solution unique du probléme (2.12), (2.13),
correspondant aux coefficients ai(x,gj,x). Nous supposerons dans ce paragraphe
les conditions (2.1), (2.3), (2.5), (2.7), (2.22)~(2.25).

IEMME 7,1+ Pour u(}) :

(7.1a) o vi“m x=oc ,
Q
(7.1D) fq (1 + ‘z/rlnaug)m Vi_mdx ¢,
(7.2) | o 2K ym=2 vi“m n o (D())Pax e, N=2.
Q [ 1=kt

Démonstration. On a

[ = Di(u-uo)fidx =] % D(u-uo)a,(x,Dlu\)ax ,
Q jil=k Q [ijzk

dtol, de (2.22)

IQ Vi-mvmax = c(1 + Huo”wﬁk)(fﬁ Vi-mvmdx)§

1

o e - n -
%ol st o+ ( VBB 5w g |
wék) P T lij=x’ e

+

2=

+ (fQ vai-mdx) 2 )

dtol (741), compte tenu de 1'inégalité de Young et de la remarque 2.1, Pour obte=
nir (7.1b), il faut tenir compte de 1!'indgalité, valable pour N = 2 :
(7.3) flw

4y =i g -
w4

Y
=]

Pour démontrer (7.2), il suffit de slapercevoir qu'on peut placer ¢ = GZk

dans (4,5) (nous savons de (4.1) que K %—1}% e\ﬁg(k)(fz)). Si nous posons

o/
&N
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nous obtenons de (4.5) :

Js J?(f yo-2 v‘2°m £ (Du)fax)® + o f vo-2 vz"m £ (D%w)?dx
o !l . 1 || =k
c D% B m. —im'. m'
* (fQ §ozz|§k' [ax) q@ 'g-'zlfklale )
2-m : 1
+ o8 (f dex) 2m(f 5 j:-—%]m'dx)m'
Q li)sic “p

+ c.J%:f Vm. Mix + ¢ f v 1v.2—m ‘})Olu]d.x~
G |oz!<k

il faut maintenant tenir compte de (7.1), (7.1b) et de (7.3), d'oh on en déduit

(742)

Nous avons avec la notation du lomme 6.4

IEMME 7.2. Pour oeH(K(xe)), oma (W=2):

(7.4) T a. .(x,0%,\)DipD? & gy - 5 Dipg.dx
‘rK(xo) li]=|3|=k * 3%, rK(:ce) |i|=k ¥
(7.5) “g ”L (I\(Xo)) =c d—k Ai-m .

Démonstration, On part de (4.5). On raisonne maintenant comme dans la démons-

tration du lemme 5.4 : pour 1l'intégrale

f 5 af
L Dy — 4x ’
K(xo) |ifk ox,
clest la méme chose. Pour
I 1
(7.6) 5 s DY P ax ,
K(xo) [ilzk Xy
on utilise

l
sz

alors

oa E'< 2=m
q(o)iaxl GX):CAd 5

pour estimer les intégrales
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! 5 a, DhgD? %% ax ,
K(xo) |i]+]ji<@k Y %

on utilise 1'inégalité (2.24), (7.2), le lemme 5.2 si |j| = k et pour le cas
|3] <k, on utilise l'estimation

| ! Jau < Jou = 2-m o m=1
gl [P 5, | = o173 ,zl eta loﬁéleu'

et on raisomne comme pour (7.6), en utilisant pour |i] <k le lemme 5.2.

Nous obtenons maintenant

IEMME T.3. Il existe Yg >0 tel que pour p =2 + Yg Ag_z :

a < o k-1 ,2(2-m) .
(1.6) O ) iy =0 Fa

En effet, cela résulte du lemme précédent et du lemme 5.3, appliqué avec
~ 2 ~ L
W o=v Amd s Yo = Yo » compte tena de (7.1) et de (7.2).

Nous avons maintenant :

IEMME Tede Soit X = gfﬂl—::'& . Alors pour u()) en question on a

“u()\)ncik)(n) =c .

Démonstration. Posons

ax) = (1 + = (%u0))P)

o=k

I1 résulte de (7.12), (7.10) et (7.2) que

cd.k o

o7 Hmy 4 =
(7.7) I ,Wél)(K(:}Co))

Nous avons avec p du lemme précédent (avec Yg assez petit).

]
d O PyAD - . ~k=1 ,2(2=

e (IR e e p2(2om),

Soit % - % +:§- ,a+b=1, a>0, Nous obtenons de (7.8) et (7.7) :

1

3M B L 2M P ya )\ Pio . o-k-1,22(2-m)

(7.9) (fL(xo) (|axl, + gaxz} )= ¢ a Ay .

Puis, nous tirons de (7.1)

(7.10) d""f m(x)[dx = c &

L(Xo
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alors, on tire de 1'indgalité (5.1) et de (7.9), (7.10) :

(7 .11) ‘m(Xo)l "'k':( ‘_.1 AéZ—m) +3a(2-m) ,
dtol

= 1= 2 +3a(n-2)

2 _ o 2
(7'12) A2d =cd a l.ud .

. -1 .
5i nous posons a = 3(_2'-7117 s hous owntenons

2(11:
< m
Azd_ c d a A

m-1

m

(e
a ’

-

IS

on en déduit facilement l'assertion en vertu du lemme 6.1.
Nous avons finalement

THEOREME 6, Soit 1 <m <2, N =2, u la solution du probléme (2.12), (2.13),

On_suppose (2.1), (2.3), (2.5), (2.7), (2.22)-(2.25). On pose 4 =% dist (x0,30),
L(xo) = {xy|x=x0] <} d} , 0y = {x, dist (x,00) > d}, Ay =1 + | W)

Alors _ o (1 +k}
1 =-m
7'1 2 u‘ = C .
(7.12) Il () 6 a

I1 existe ¢>0 telaquesi p=2+c Ai‘m, alors

4§1+k2§2—m2
—(1 +k)" m"1

. Jl =
- Pl ey
et
(7.14) usC(k) ’p‘(ﬁd) avec po=1 - 2,

P
Démonstration. D'aprés le théoréme 4, on a u(h)eCik)(Q) avec X = %ﬂi&
Mais il résulte de (7.6) et du lemme T.4 que
-(1+k)— 4(1+k)(2-m

(7.15) =04 m-1

RO
i lwgk (1))

I1 stensuit quton peut trouver une suite )\ - 0 telle que u(k ) »w dans
W(k)(m) pour chaque (' c<Q, D u(x ) - Do‘w |¢j =k presque partout dans Q .
On peut faire le passage & la limite ) - O dans (2.12) et supposer que u()\ ) ~w
dans W k (Q) et dans W(k+1 (@ d) in vertu de 1l'unicité de 1la solution du proble-

me en quest:.on, W=u et on tire de (7.15) 1'inégalité (7.13). Ceci nous donne
(7.14), aton (7.12) en vertu du lemme 7.4.
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§ 8. Régularité jusqu'a la frontidre, m = 2, N =2,
Nous supposons dans ce paragraphe o2 indéfiniment continfiment différentiable,
(2.1), (2.8), (2.9), (2.26)-(2.29) et 1la condition :

(8.1)  (2.26)=(2.29) sont invariantes par transformation orthonormale des cartes.

N

Nous pouvons décrire la frontieére 3 au voisinage de chaque point de 30 &
1taide d'une fonction indéfiniment continfment différentiable. Pour fixer les
idées, nous supposons définie une telle fonction dans un systéme de cartes carté-

siennes (que nous notons encore x) 3

1A
=

?

(8.2) xN=a(X'), x! = (Xl ,0-"XN_1)y IX'I

avec a de &(I'Zr) (Kr = {x}|x'| <=x}). Supposons que les points |x'| = r,
a(x!) < x; < a(x!)+r appartiennent & O, tandis que les points |x'| = T,
a(x') - r< x; < a(x') sont hors de Q, et désignons 1l'ensemble |x'| <r,

a(x!') < xg < a(x?)+r par V. . Supposons que
N~1 3a ))
Z (“"_" (O ° = 0 .

Dans V , définissons Mles dérivées dans la direction paralldle & 30 " 3
r

pour x¢V, ce seront les dérivées dans le plan orthogonal & la direction

- 82 (43 .98 '
( axl(x )9000, aXN-t-’l(x )31)-
Pour fixer les idées, nous choisissons ces directions en prenant pour elles :

Vg = (0505000,1 909000 '2—?; (x'))s L= 1,25000,N=1 .

£
Posons Nt )
H(x) = = X (-55-}-5 (M) + Sa- (D™Mu) -2—3- 2 .
HEE ) N )

IEMVE 8.1 Soit p =2 et u(u) la solution du probléme (2.12), (2.13), corres-

pondant au paramétre p. Supposons que

w(w)ec® @ n @) .

Alors

(8,1a) [ Wax=c,
Q

(841p) [ v Hraxsc.
A

T
Démonstration. (8.1a) résulte irmédiatement de (2.26). Soit e 33(Vr) et défi-
nissons pour xeV, B(x) = (0,040,0,7,0,000,0, a(x'+h') - a(x')) avec 7 2 la

(Oyeees50,750504450)s Nous avons dlapres (2.12)

o0

4=~&me place et ht
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!

. (Y(x + h(x)) ~ z)i;p(x))ai(x,niu(x;u)ax
!l

1

;ék
1

= by (D o(x+h(x)) - Dv(x)f (x)ax
Q |il=k

et par le passage & la limite T - O, on obtient :

e 92 22 3
(8.2) J"Q éiZS_S_k D (ax + o, ax ) a, 4 (3,D%u 0 )ax

= = Dl( #2228 yp gy,
Q l j BX BXN BX’Q i
Ltintégration par parties nous donne
(8.3) f by Diq; 233 DJ g_l;c; ax + JF 5 ok 0, Da(gu gi Yax
Q jifsk L Q lil=k *w
"'f bX Dcpbad.x+J z D\Pa DYud ax
Q io( ,“3|<k x B Q (C"’slelle'<k oB Y
da. . da.
+f zncp—--dx+j ply —t 22
Qjijsm o o pijmc ¥ oy 0%,
i ofy _
T *izl:SkD ? ox, et IQ ) Z;ekkD oty & on by10,d,e @)
AT ]

En vertu de l'hypothdse que u\C(“) @) n W(k"H )(Q), nous pouvons prendre
q:ew(k)(ﬂ) et en perticulier :

Jllo 0 dUo4d
S e

Nous obtenons de (8.3), si nous posons

J

i

[ P ax
Q

L
cJ® +¢c, dlou J=c

4
”/\

et llassertion.

LEMME 8.2, Supposons toujours u(;J,)';C(k)(ﬁ) N WQ(H1 )(Q) Alors pour r assez petit

8, 2kV2(l‘L_2) 2 ax = o(x Jw 2
ORI (XN B2 eI+l g )

Démonstration. Désignons par

N1 3a
u.)(I‘) = meX by i'é'}'c' (X')I9 (01"'9091("1) =
le{r i=1 i
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V= (Oyeees05k)y ¥ = (0;,00.,0,kt1) et posons g(x) = ﬁl\— (er( a.\.’(x,Dau)) .
Pour |oj =k=~1, o # v, nous avons pour geH(Q):
(8.5) [ 0%eax = [ 0Po 2—(yF a)ax

Q Q 0% TV

avec 4 = N-l, Pour o =9, on a dlaprés (2.12) :

V(. K o,k o, k
(8.6) fﬂ D (cpyr)a\7 dx \)aO[D (cpyr)d.x +f £ D (@Yr)fadx .

Q |o|sk

i
]
=
]
[ng]

I1 résulte maintenant de (8.1), compte tenu des indgalités (2.26)-(2.29) et du
(o) - =
lemme 3.3, en posant J = | yikv’f('“ 2)(D\)u)zd.x 3
Q

L & -1
J = ¢ u)(l’_‘)J:é + cz(r)(1 + ‘|u_i|c(k)(r_2))2 9

ol

d.' O{l 8040
On a évidemment ¢

CONSEQUENCE 841+ Pour u(u), ona

. Vz(“’_z) Du)Pdx = ¢ u p,-2’
(6D IQ |Olzi:§k+1 (Fufiex 2 ot + d(k)(ﬁ))
(41 )p 11/ z -
(8.8a) ([’Q VW Pa) P = (1 4 Hu”c(k)(ﬁ)) , N=2, 1sp<a,
(@-1 )Nélg Ngﬁ' _ ) % -1 -
(8.8D) j‘Q v ax) <= (1 + ”u?'c(k)(ﬁ)) , Nz3,

IEMME 8.3, Supposons u(u)ec(k)(ﬁ) N wz(k”) Q). Alors il existe Y5 > 0 tel que
1" 2,
pour p =2 + vo(1 + [[u _ )™, oma
5 O M

(u-2) : 3G )
Plu= “ulPax)? = ¢ u - .
(89) (fﬂv Iozékﬁ!D Fan 2 ol 4 ‘Ic(k)(ﬁ))

Démonstration. Dans Vr s posons

ou du  da k
o= (8 Lo g2y k
axﬂ u% XZ r

I1 résulte de (8.3), ol nous posons pour ¢ s \pyi s Que w satisfait & une

équation lindaire, & savoir en vertu de (8.1), (8.7), (8.8) et du lemme 3413

(8.9) £ a Dodluax = ¢ Ddlg.ax
”rQ 1il=]3|=k *Y Q li|=k T
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v

avec
&

. = c + |u )2 .
Hgl“L @) (1 | HC(k)(ﬁ)

Po
Nous utilisons maintenant le théoréme 2 pour

U,  JUo 3a
ek
0%y OXy OX,

)

1
~ ~ -2 s ..z
et obtenons, en posant Y, =y, , V. = v (1 + ”“HC(k) (ﬁ))M 1'inégalité

£

(8.10) 2

ol oy 2 ()0 + fu )

Maintenant, on procéde comme dans lo démonstration du lemme 8.2 : posons
k o

g(x) = gigﬂvrag(x,D W)

I1 résulte de (8.5),(8.6),(8.10), compte tenu des indgalités (2.26), (2.29) et du
lemme 5.3, en posant

3= ylripvp(u-z)jl)\:)uipdx :
a
x 5 )3({;_.”— -1)
.11 Ecqw 1 u ’
(8.11) I = o a(r)T” + g (2)(1 + | ”c(k)aﬁ)

dtol (849) en vertu de (8.10).

IBOE 8.4, Supposons u(u)ect® () 0w @), N - 2. Alors

(8.12) ,;u(u)ilc(k)(ﬁ) + iiu(u)ﬂwg(kﬂ)(ﬂ) e

et il existe q > 2 tel que
(8.13)

”u(u)hvék_l_-l)(m) =c .

Démonstration. Soit

p_l
-2

n(x) = (1 + = (@u@PR? .
]oz!:k

I1 suit de (8.7) que

(8.14) ”me§1)(Q) = c(1 + HuHC(k)(ﬁ))
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De (8,9) et de (8.8) il s'ensuit que

(8.15) | (| P
. ! = c(l + Jju
"m'lwl(: )(2) “C(k) @)
avec
. 2
Pp=2+ \(5(1 + lluHC(k)(ﬁ)) o
Soit %l=%+:§-, atb =1, 1 <a <0, On obtient :

- , | 2
D=2+ ay5(1 + Hu”c(k)(ﬁ)) -

I1 résulte de (8.14), (8.15) et duv lemme 3.2 :

(8.16) (4 T 0% m) = o )%(% “)+3a(s 1)
. + ' ) = 6 ul P .
'o[!__.kl Yle@) + ) l]C(k)(ﬁ)

Dtautre part, en vertu de (8.1) :

Tt flul

“o(l+ 2 [Plg())

(&) (@) I
alors il stensuit, en vertu de (8.16), si nous posons a =

(8417)

1 °
'3"; °
”u(,u)nc(k)(ﬁ) =c .

(8.12) résulte de 8417 et de (8.7)5 (8413) de (8.9).

THEOREME Te Soit Q un domaine vorné 3 frontidre indéfiniment contintment diffé-
rentiable, N = 2 et supposons que les hypothdses (2.1), (2.8), (2.9), (2.26)~-
(2.29),.(8.1) soient valables. Alors la solution u du probléme de Dirichlet
(2.12), 52.13) appartient 3 wl()lj““ﬂ(n) avec po > 2, donc & c(ks’“‘(ﬁ) avec
o=l ==

o

Démonstration. Considérons dtabord le cas m = 2. Soit

a‘i(x9€jlt) = (1-t)6ijga + tai(xigj)

pour O = t =1 avec Si.

0 pour 'il + |jl <2k et éij =1 pour i=j,
855 =0 pour i # 3, |i] = |3' = k. Evidemment, les conditions (2.26)=(2.29) sont
valables uniformément par rapport & + 5 soit u(t) la solution du probléme (2.12),
(2.13)s Pour + = 0, l'assertion est vraie en vertu des théorémes bien connus
pour les équations lindéaires, cf. par exemple [10]. Désignons par N, 1tensemble
des t pour lesquels (8.13) est wlable avec q = po « N est fermé : si = to

et pour les tn (8.13) est valable, il stensuit, en vertu du lemme 2.1, que u(tn)
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est un ensemble compact dans W(S)QQ) On peut en extraire une suite, encore notée

u(t ), telle que u(t ) »u dans 'J(L)(Q) Ils s'ensuit en vertu de 1l'unicité de

la solution du probléme pour t que u(to) =u, d'ol 1'énoncé. N est ouvert :

en effet, soit toell et désignons war A 1topérateur de W(1)(C)]X dans

W§k+1 (@), ot x est le nombre des indices |i| =k, donnant la solution du pro~-
o

bléme. Soit V = {u, u—uoew( )QQ)} et désignons par B 1'opérateur de w(k+1)(g)
dans W§1)62), défini par (to-t)a (x,DJu) + (t=to) T 613D3u. Soit
[+]
13| =k

U, = {uewgzﬂ)(g) n v,nu-u(to)nw(km =1} .
Po

Lopérateur ABu + u(t,) pour xtnuo‘ assez petit transforme T,
Dtautre part, il est faiblement

dans lui-méme.
continu W£k+1) étant un espace réflexif, séparable,
on peut utiliser le théoreme de Schauder "faible", cf. J. Schauder [21], dtol

1texistence du point fixe wu. Evidemment u = u(t).

I1 faut encore voir que l'es-
timation (8.13) est valable avec ¢ = po. Mais cette estimation est valable avec
q du lemme précédent. Il s'ensuit que les coefficients ay . dans (8.9)' sont
hdldériens. Il résulte alors du trovail [10] que || (k+1) = ¢, Mais 1tapplica-
tion du procédé, basé sur le lemme 5.3 ci-dessus nous P

mation "a priori" (8.13) avec Do .

donne finalement ltesti-
Tl s'ensuit que N = < 0,1 >, d'ol la démons-—

tration dans le cas m =2, Si m> 2, considérons ue < 2,m > et les solutions

u(u)e Mais pour p =2 1'assertion est vraie. Maintenant, on raisonne comme

ci~dessus, en posant B = ai(x,DJu,uo) - a.(x,D u,u), dlou la démonstration.

Remarque. Sous les hypotheses mentionnées et encore avec ala = aJl pour
|i]=|j[=k, on peut démontrer par la méme méthode, avec les modifications correspon=-

dant au paragraphe 7, le théoréme 7 pour 1 <m < 2,
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