J. WERMER

Some rationally convex sets

Séminaire Équations aux dérivées partielles (Polytechnique) (1972-1973), exp. no 17, p. 1-5

<http://www.numdam.org/item?id=SEDP_1972-1973___A18_0>
SEMINAIRE GOULAOUIC-SCHWARTZ 1972-1973

SOME RATIONALLY CONVEX SETS

by J. WERMER
We consider a compact Hausdorff space X and on X a uniform algebra \mathcal{A}. That means that \mathcal{A} is an algebra of continuous complex-valued functions on X, closed under uniform convergence on X, separating the points of X, and containing the constants.

With norm

$$\|f\| = \max_X |f|,$$

\mathcal{A} is then a commutative Banach algebra with unit. According to Gelfand, \mathcal{A} possesses a spectrum $\mathbb{M}(\mathcal{A})$, i.e. the space of all non-trivial homomorphisms of $\mathcal{A} \to \mathbb{C}$. $\mathbb{M}(\mathcal{A})$ is a compact Hausdorff space, in Gelfand's topology.

There is a natural injection of X into $\mathbb{M}(\mathcal{A})$, namely the map sending each point x into the functional of evaluation at x. This injection may or may not be onto, i.e. we may have $\mathbb{M}(\mathcal{A}) = X$ or $\mathbb{M}(\mathcal{A})$ larger than X.

When $\mathcal{A} = C(X)$, one has $\mathbb{M}(C(X)) = X$. We have

Problem: Let \mathcal{A} be a uniform algebra on X such that $\mathbb{M}(\mathcal{A}) = X$. What additional condition assures that $\mathcal{A} = C(X)$?

Of course, one has the classical condition of Stone:

$$f \in \mathcal{A} \Rightarrow \overline{f} \in \mathcal{A}.$$

But in problems of uniform approximation in the complex domain this condition is usually difficult to verify.

In 1959, E. Bishop in [1] introduced the notion of a peak point. Let X now be metrizable, \mathcal{A} a uniform algebra on X. Fix $x_0 \in X$.

x_0 is a peak point for \mathcal{A} if $\exists f \in \mathcal{A}$ with $f(x_0) = 1$ and $|f| < 1$ on $X \setminus \{x_0\}$.
Evidently, when $\mathcal{A} = C(X)$ every point of X is peak point. When \mathcal{A} is the disk algebra of functions analytic in the open unit disk and continuous in $|z| \leq 1$, $\mathbb{D}(\mathcal{A})$ is the full disk while the peak points are exactly the points on the boundary. In general, the set of peak points does not coincide with the Silov boundary of \mathcal{A}, but in fact coincides with the Choquet boundary.

Let now X be a compact subset of \mathbb{C}. We denote by

$$ R(X) $$

the uniform algebra on X which is the closure on X of the set of rational functions of z which are holomorphic on X.

It was pointed out by Mergelyan that there exist sets X without interior points such that $R(X) \neq C(X)$. In [1] Bishop proved the following

Theorem: $R(X) = C(X)$ if and only if each point of X is a peak point for $R(X)$.

The question now arose to what extent this result was a general property of uniform algebras. It is not easy to find, among examples arising in a natural way, uniform algebras distinct from $C(X)$, yet such that the spectrum of the algebra consists entirely of peak points.

In 1968, in his Yale thesis Brian Cole gave a very general construction of uniform algebras \mathcal{A} with the property that every element of \mathcal{A} has a square root in \mathcal{A}, and used this construction to produce an example of an \mathcal{A} with $\mathbb{D}(\mathcal{A}) = X$, every point of X is a peak point, yet $\mathcal{A} \neq C(X)$. Later on, he modified his construction to obtain an example which is doubly generated.

It remained of interest, however, to exhibit concrete and simple examples of such algebras. I want to discuss such a construction, due to Richard Basener and contained in his thesis, Brown University (1971).
Let X now be a compact set in \mathbb{C}^n. We define $R(X)$, in analogy with the case $n=1$, as the closure in $C(X)$ of the set of quotients $\frac{P}{Q}$ where P, Q are polynomials in z_1, \ldots, z_n and $Q \neq 0$ on X.

Fix $m \in \mathfrak{M}(R(X))$. Put

$$a = (m(z_1), \ldots, m(z_n)), \ a \in \mathbb{C}^n.$$

We claim:

For every polynomial Q:

$$(*) \quad Q(a) = 0 \Rightarrow Q \text{ vanishes somewhere on } X.$$

For if not, $f'Q, Q(a) = 0, \frac{1}{Q} \in R(X)$. Then

$$1 = m\left(\frac{1}{Q} \cdot Q\right) = m\left(\frac{1}{Q}\right) m(Q) = 0,$$

since $m(Q) = Q(a)$. So $(*)$ holds.

Definition: $h_r(X) = \{a \in \mathbb{C}^n \mid (*) \text{ holds}\}$.

$h_r(X)$ is called the rationally convex envelop of X. To each $m \in \mathfrak{M}(R(X))$ there corresponds, as we have just seen, a point $a \in h_r(X)$. The map is easily seen to be bijective, and we may identify $\mathfrak{M}(R(X))$ with $h_r(X)$. We note that when $n = 1$, $h_r(X)$ evidently coincides with X. For $n > 1$, $h_r(X)$ may be larger than X.

Fix now a closed subset S of the open disk $|z| < 1$ in the z-plane. Denote by B the ball : $|z|^2 + |w|^2 \leq 1$ in \mathbb{C}^2 and by ∂B its boundary. Put

$$X_S = \{(z,w) \in \partial B \mid z \in S\}.$$

Thus X_S is the set of those points on ∂B which project into S.

Note that if $z \in S$, the entire circle

$$\Gamma_z = \{(z,\sqrt{1-|z|^2} \cdot e^{i\theta}) \mid 0 \leq \theta < 2\pi\}$$

$$X_S = \{(z,w) \in \partial B \mid z \in S\}.$$

Thus X_S is the set of those points on ∂B which project into S.

Note that if $z \in S$, the entire circle

$$\Gamma_z = \{(z,\sqrt{1-|z|^2} \cdot e^{i\theta}) \mid 0 \leq \theta < 2\pi\}$$
lies in X_S. Thus X_S is, in a sense, a fibrespace with base S and fiber a circle.

Basener's result is the following:

Theorem: There is S such that the algebra $R(X_S)$ has the properties:

(a) $R(X_S) \neq C(X_S)$.
(b) $h_r(X_S) = X_S$.
(c) Each point of X_S is a peak point for $R(X_S)$.

The proof of (c) is trivial.

Let $(z_0, w_0) \in \partial B$. Put

$$P(z, w) = \frac{1}{2} \{z \overline{z}_0 + w \overline{w}_0 + 1\}.$$

Then $P(z_0, w_0)$ and $|P| < 1$ on the rest of ∂B. So (c) holds.

To obtain (a) we only need S such that $R(S) \neq C(S)$. For then there is a complex measure μ on S, $\mu \neq 0$, with $\mu \downarrow R(S)$. For each $F \in C(X_S)$, put

$$L(F) = \int_S \mu(z) \left(\int_{\Gamma_z} F \, dm_z \right),$$

where m_z is normalized Lebesgue measure on Γ_z. The L is a bounded linear functional on $C(X_S)$, and $\neq 0$.

If F is holomorphic in some neighborhood of X_S, it is easily verified that $\int_{\Gamma_z} F \, dm_z$ is holomorphic in Z in a neighborhood of S, and so $\in R(S)$. Hence $L(F) = 0$. It follows that L vanishes on $R(X_S)$, and so (a) holds.

To obtain (b) we must restrict S rather severely, and we do not give the details here. They are given in Basener's forthcoming paper [2], and also in [3], pp. 202-203. The crucial point in the proof of (b) is the notion of a Jensen measure.

Let \mathcal{O} be a uniform algebra on a space X and $m \in M(\mathcal{O})$. A Jensen measure μ_m for m is a probability measure on X such that Jensen's...
inequality

$$\log |\hat{\mathcal{f}}(m)| \leq \int_{\mathcal{X}} \log |f| \, d\mu_{m}$$

holds for all $f \in \mathcal{A}$. Concerning Jensen measures, see [3] or [4].

Cole's work, discussed above, also is treated in [3] and [4].

REFERENCES

