JANETault
MARIO PETRICH
The structure of ω-regular semigroups

<http://www.numdam.org/item?id=SD_1969-1970__23_2_A6_0>
THE STRUCTURE OF \(\omega \)-REGULAR SEMIGROUPS

by Janet AULT and Mario PETRICH

1. Finding the complete structure of regular semigroups of a certain class has succeeded only when sufficiently strong conditions on idempotents and (or) ideals have been imposed. On the one hand, there is the theorem of REES [7], giving the structure of completely \(0 \)-simple semigroups, and its successive generalizations to primitive regular semigroups [2], and \(3 \)- and \(3_i \)-regular semigroups [4]. On the other hand, with very different restrictions, REILLY [8] has determined the structure of bisimple \(\omega \)-semigroups and, independently of each other, KOCHIN [1] of inverse simple \(\omega \)-semigroups, and MUNN [5] of inverse \(\omega \)-semigroups.

An \(\omega \)-chain with zero is a poset \(\{e_i \mid i > 0\} \cup \{0\} \), with \(e_i > e_j \) if \(i < j \), and \(0 < e_i \) for all \(i, j \). We call a regular semigroup \(S \) \(\omega \)-regular, if \(S \) has a zero, and the poset of its idempotents is an orthogonal sum [2] of \(\omega \)-chains with zero. We announce here the complete determination of the structure of such semigroups, including various special cases thereof, and briefly mention their isomorphisms.

2. An \(\omega \)-regular semigroup can be uniquely written as an orthogonal sum of \(\omega \)-regular prime (i.e., with \(0 \) a prime ideal) semigroups. This reduces the problems of structure and isomorphism to \(\omega \)-regular prime semigroups. We distinguish three cases:

(i) \(0 \)-simple,
(ii) Prime with a proper \(0 \)-minimal ideal,
(iii) Prime without a \(0 \)-minimal ideal.

Case (i) is the most difficult (and interesting), and includes a variety of special cases some of which reduce to those constructed by REILLY [8], KOCHIN [1], and MUNN [5], [6].
and define \([i, \alpha, j] \) to satisfy
\[
[i, \alpha, j] d = (i - j) - (\langle \alpha, i \rangle - \langle \alpha, j \rangle).
\]

Construction 1. - On the set
\[S = \{ (\alpha, m, g, n, \beta) \mid \alpha, \beta \in A, \ m, n > 0, \ g \in V \} \cup O, \]
define a multiplication by, for \(g_i \in G_i, \ g_j \in G_j, \ v = n - s - [i, \beta, j], \)
\[
(\alpha, m, g_i, n, \beta)(\beta, s, g_j, t, \gamma)
\]

\[
= \begin{cases}
\alpha, m - [i, \alpha, j] - v, (g_i \sigma^{-v})g_j, t, \gamma, & \text{if } v < 0, \\
(\alpha, m, g_i(g_j \sigma^{-v}), t + [i, \gamma, j] + v, \gamma), & \text{if } v > 0,
\end{cases}
\]

and all other products are equal to 0. The set \(S \), with this multiplication, will be denoted by \(\mathcal{O}(A, w; V, \sigma) \).

Construction 2. - On the set
\[S' = \{ (\alpha, m, g, n, \beta) \mid \alpha, \beta \in A, \ m - w_\alpha = n - w_\beta = i \pmod{d}, \ g \in G_i \} \cup O, \]
define a multiplication by, for \(g_i \in G_i, \ g_j \in G_j, \ v = n' - s' - [i, \beta, j], \)
where \(n = n'd + n'', \ s = s'd + s'', \ c \leq n'', \ s'' < d, \)
\[
(\alpha, m, g_i, n, \beta)(\beta, s, g_j, t, \gamma)
\]

\[
= \begin{cases}
(\alpha, m + s - n, (g_i \sigma^{-v})g_j, t, \gamma), & \text{if } n \leq s, \\
(\alpha, m, g_i(g_j \sigma^{-v}), t + n - s, \gamma), & \text{if } n > s,
\end{cases}
\]

and all other products are equal to 0. The set \(S' \), with this multiplication, will be denoted by \(\mathcal{O}[A, w; V, \sigma] \).

The following is our fundamental result.

THEOREM 1. - For a groupoid \(S \), the following statements are equivalent:

(i) \(S \) is a 0-simple \(\omega \)-regular semigroup;
(ii) \(S \) is isomorphic to \(\mathcal{O}(A, w; V, \sigma) \);
(iii) \(S \) is isomorphic to \(\mathcal{O}[A, w; V, \sigma] \).

The proof of "(i) \(\implies \) (ii)" consists of "introducing coordinates" into various \(L \) - and \(R \) -classes, and of constructing the homomorphism \(\sigma \); it is quite long, and
is broken into a sequence of lemmas. For "(ii) \Rightarrow (iii)"$, one finds a suitable isomorphism, while "(iii) \Rightarrow (i)" consists of a verification of the defining properties of a 0-simple ω-regular semigroup.

Define the top of S in the theorem by $3(S) = \{a \in S \mid e \leq a, a \not\leq f \text{ for some maximal idempotents } e, f \} \cup 0$. Then $3(S)$ is a primitive inverse semigroup. It follows from the proof that we can always suppose that $w_\alpha = 0$ for some $\alpha \in \Lambda$. Call S balanced, if any two maximal idempotents of S are Ω-equivalent.

THEOREM 2. - The following conditions on a 0-simple ω-regular semigroup S are equivalent:

(i) S is balanced;
(ii) S admits a representation as in theorem 1, with $w_\alpha = 0$ for all $\alpha \in \Lambda$;
(iii) $3(S)$ is a Brandt semigroup;
(iv) S is isomorphic to a Rees matrix semigroup $\mathcal{R}(K; \Lambda, \Lambda; \Lambda)$ over a simple inverse ω-semigroup K, Λ is the identity matrix.

The structure of the semigroup K in theorem 2 was determined by KOCHIN [1] and MUNN [5], the Rees matrix semigroups over bisimple inverse semigroups were studied in [3] (for the 0-simple case in the theorem, cf. [3], cor. 5.7, and [6], th. 4.2). Various other special cases include: 0-bisimple, combinatorial, balanced, and combinations thereof.

\section{Construction 3.} - Let Y be a tree semilattice satisfying one of the two conditions:

(1) Y has a zero ζ, and all elements of Y are of finite height;
(2) Y has no zero, and is of locally finite length.

To every non-zero element α of Y, associate a Brandt semigroup S_α, suppose that the family $\{S_\alpha\}$ is pairwise disjoint, and that a homomorphism $\varphi_\alpha : S_\alpha \to S_\beta$ is given, where α is the unique element of Y covered by α, with the properties:

(i) $S_\alpha \varphi_\alpha \cap S_\beta \varphi_\beta = 0$, if $\alpha = \beta$;
(ii) For every infinite ascending chain $\alpha_1 < \alpha_2 < \cdots$ in Y, and every $\alpha \in S_\alpha_1$, there exists α_k such that $a \notin S_\alpha_k \varphi_\alpha_k \cdots \varphi_\alpha_1, \alpha_2$.

Let $\psi_{\alpha, \beta}$ be the identity mapping on S_α, and for $\alpha > \beta$, let

$$\psi_{\alpha, \beta} = \varphi_\alpha \varphi_\alpha_1 \cdots \varphi_\alpha_n$$

where $\alpha > \alpha_1 > \cdots > \alpha_n > \beta$.

where ξ is the zero of Y (if Y has one), and 0 is an element not contained in any S_α; and on S define the multiplication \ast by

$$a \ast b = (a^{\alpha}, a^\beta)(b^{\beta}, a^\beta), \quad \text{if } \alpha \beta \neq \xi \quad \text{and} \quad (a^{\alpha}, a^\beta)(b^{\beta}, a^\beta) \neq 0^\beta \text{ in } S_\alpha^\beta;$$

and all other products are equal to 0. The set S, with this multiplication, will be called a Brandt tree, if Y has a zero and a rooted Brandt tree otherwise.

Theorem 3. - A semigroup S is prime ω-regular and has a proper 0-minimal ideal if, and only if, S is an ideal extension of a 0-simple ω-regular semigroup I by a Brandt tree T determined by a 0-restricted homomorphism of T into the top of I.

Such a homomorphism is completely determined by its restriction to the socle $S(T)$ of T, so all such homomorphisms are given by 0-restricted homomorphisms of $S(T)$ into $3(I)$, both of which are primitive inverse semigroups, and are easy to find explicitly.

Theorem 4. - A groupoid S is a prime ω-regular semigroup without 0-minimal ideals if, and only if, S is a rooted Brandt tree.

5. - The semigroups $G(A, w; V, \sigma)$ and $G[A, w; V, \sigma]$ do not seem to admit a neat isomorphism theorem, except in special cases. In the balanced case, using theorem 2, ([3], 4.1) and ([1], theor.4), we derive a satisfactory isomorphism theorem. A direct proof does the same in the case these semigroups are combinatorial. Isomorphisms of the semigroups in construction 3 are similar to those in [4], théorème 3.1, while isomorphisms of the semigroups in theorem 3 can be expressed by isomorphisms of I and T satisfying a commutative diagram.

References

(Texte reçu le 15 septembre 1970)

Janet AULT and Mario PETRICH
Pennsylvania State University
Department of Mathematics
UNIVERSITY PARK, Pa (Etats-Unis)