The structure of ω-regular semigroups

<http://www.numdam.org/item?id=SD_1969-1970__23_2_A6_0>
THE STRUCTURE OF \(\omega \)-REGULAR SEMIGROUPS

by Janet AULT and Mario PETRICH

1. - Finding the complete structure of regular semigroups of a certain class has succeeded only when sufficiently strong conditions on idempotents and (or) ideals have been imposed. On the one hand, there is the theorem of REES [7], giving the structure of completely \(0 \)-simple semigroups, and its successive generalizations to primitive regular semigroups [2], and \(3 \)- and \(3 \)-regular semigroups [4]. On the other hand, with very different restrictions, REILLY [8] has determined the structure of bisimple \(\omega \)-semigroups and, independently of each other, KOCHIN [1] of inverse simple \(\omega \)-semigroups, and MUNN [5] of inverse \(\omega \)-semigroups.

An \(\omega \)-chain with zero is a poset \(\{ e_i \mid i > 0 \} \cup \{ 0 \} \), with \(e_i > e_j \) if \(i < j \), and \(0 < e_i \) for all \(i, j \). We call a regular semigroup \(S \) \(\omega \)-regular, if \(S \) has a zero, and the poset of its idempotents is an orthogonal sum \([2]\) of \(\omega \)-chains with zero. We announce here the complete determination of the structure of such semigroups, including various special cases thereof, and briefly mention their isomorphisms.

2. - An \(\omega \)-regular semigroup can be uniquely written as an orthogonal sum of \(\omega \)-regular prime (i.e., with \(0 \) a prime ideal) semigroups. This reduces the problems of structure and isomorphism to \(\omega \)-regular prime semigroups. We distinguish three cases:

(i) \(0 \)-simple,
(ii) Prime with a proper \(0 \)-minimal ideal,
(iii) Prime without a \(0 \)-minimal ideal.

Case (i) is the most difficult (and interesting), and includes a variety of special cases some of which reduce to those constructed by REILLY [8], KOCHIN [1], and MUNN [5], [6].
and define \([i, \alpha, j]\) to satisfy
\[
[i, \alpha, j]d = (i - j) - (\langle \alpha, i \rangle - \langle \alpha, j \rangle).
\]

\textbf{Construction 1.} - On the set
\[
S = \{ (\alpha, m, g, n, \beta) \mid \alpha, \beta \in A, \ m, n \geq 0, \ g \in V \} \cup \{0\},
\]
define a multiplication by, for \(g_i \in G_i, \ g_j \in G_j, \ v = n - s - [i, \beta, j],\)
\[(\alpha, m, g_i, n, \beta)(\beta, s, g_j, t, \gamma) = \begin{cases}
(\alpha, m - [i, \alpha, j] - v, (g_i \sigma^{-v})g_j, t, \gamma), & \text{if } v < 0, \\
0, & \text{or } v = 0, i < j, \\
(\alpha, m, g_i(g_j \sigma^v), t + [i, \gamma, j] + v, \gamma), & \text{if } v > 0, \\
0, & \text{or } v = 0, i > j,
\end{cases}
\]
and all other products are equal to 0. The set \(S\), with this multiplication, will be denoted by \(\mathcal{O}(A, w; V, \sigma)\).

\textbf{Construction 2.} - On the set
\[
S' = \{ (\alpha, m, g, n, \beta) \mid \alpha, \beta \in A, \ m - w = n - w = i \pmod{d}, \ g \in G_i \} \cup \{0\},
\]
define a multiplication by, for \(g_i \in G_i, \ g_j \in G_j, \ v = n' - s' - [i, \beta, j],\)
where \(n = n'd + n'', \ s = s'd + s'', \ C \leq n'', \ s'' < d,
\[(\alpha, m, g_i, n, \beta)(\beta, s, g_i, t, \gamma) = \begin{cases}
(\alpha, m + s - n, (g_i \sigma^{-v})g_j, t, \gamma), & \text{if } n < s, \\
(\alpha, m, g_i(g_j \sigma^v), t + n - s, \gamma), & \text{if } n > s,
\end{cases}
\]
and all other products are equal to 0. The set \(S'\), with this multiplication, will be denoted by \(\mathcal{O}[A, w; V, \sigma]\).

The following is our fundamental result.

\textbf{Theorem 1.} - For a groupoid \(S\), the following statements are equivalent:

(i) \(S\) is a 0-simple \(\omega\)-regular semigroup;
(ii) \(S\) is isomorphic to \(\mathcal{O}(A, w; V, \sigma)\);
(iii) \(S\) is isomorphic to \(\mathcal{O}[A, w; V, \sigma]\).

The proof of "(i) \(\Rightarrow\) (ii)" consists of "introducing coordinates" into various \(L\) and \(R\)-classes, and of constructing the homomorphism \(\sigma\); it is quite long, and
Theorem 2. — The following conditions on a 0-simple \(\omega \)-regular semigroup \(S \) are equivalent:

(i) \(S \) is balanced;
(ii) \(S \) admits a representation as in Theorem 1, with \(w_\alpha = 0 \) for all \(\alpha \in \Lambda \);
(iii) \(\mathcal{S}(S) \) is a Brandt semigroup;
(iv) \(S \) is isomorphic to a Rees matrix semigroup \(\mathcal{M}^0(K; A, A; \Lambda) \) over a simple inverse \(\omega \)-semigroup \(K \), \(\Lambda \) is the identity matrix.

The structure of the semigroup \(K \) in Theorem 2 was determined by Kochin [1] and Munn [5], the Rees matrix semigroups over bisimple inverse semigroups were studied in [3] (for the 0-simple case in the theorem, cf. [3], cor. 5.7, and [6], th. 4.2). Various other special cases include: 0-bisimple, combinatorial, balanced, and combinations thereof.

Construction 3. — Let \(Y \) be a tree semilattice satisfying one of the two conditions:

1. \(Y \) has a zero \(\zeta \), and all elements of \(Y \) are of finite height;
2. \(Y \) has no zero, and is of locally finite length.

To every non-zero element \(\alpha \) of \(Y \), associate a Brandt semigroup \(S_\alpha \), suppose that the family \(\{ S_\alpha \} \) is pairwise disjoint, and that a homomorphism \(\varphi_\alpha : S_\alpha \to S_\alpha \) is given, where \(\alpha \) is the unique element of \(Y \) covered by \(\alpha \), with the properties:

(i) \(S_\alpha \varphi_\alpha \cap S_\beta \varphi_\beta = 0 \), if \(\alpha = \beta \);
(ii) For every infinite ascending chain \(\alpha_1 < \alpha_2 < \ldots \) in \(Y \), and every \(\alpha \in S_\alpha \), there exists \(\alpha_k \) such that \(\alpha \notin S_{\alpha_k} \varphi_{\alpha_k} \varphi_{\alpha_{k-1}} \cdots \varphi_{\alpha_1} \).

Let \(\psi_{\alpha, \beta} \) be the identity mapping on \(S_\alpha \), and for \(\alpha > \beta \), let
\[\psi_{\alpha, \beta} = \varphi_\alpha \varphi_{\alpha_1} \cdots \varphi_{\alpha_n}, \] where \(\alpha > \alpha_1 > \ldots > \alpha_n > \beta \).
Let
\[S = \left(\bigcup_{\alpha \in \mathcal{Y} \cap \zeta} (S_\alpha \setminus 0_\alpha) \right) \cup 0 , \]
where \(\zeta \) is the zero of \(Y \) (if \(Y \) has one), and 0 is an element not contained in any \(S_\alpha \); and on \(S \) define the multiplication \(\ast \) by
\[a \ast b = (a^{(\alpha, \alpha_\beta})(b^{(\alpha, \alpha_\beta)}) , \text{ if } \alpha \beta \neq \zeta \text{ and } (a^{(\alpha, \alpha_\beta)})(b^{(\alpha, \alpha_\beta)}) \neq 0_\alpha \text{ in } S_\alpha , \]
and all other products are equal to 0. The set \(S \), with this multiplication, will be called a Brandt tree, if \(Y \) has a zero and a rooted Brandt tree otherwise.

THEOREM 3. - A semigroup \(S \) is prime \(\omega \)-regular and has a proper 0-minimal ideal if, and only if, \(S \) is an ideal extension of a 0-simple \(\omega \)-regular semigroup \(I \) by a Brandt tree \(T \) determined by a 0-restricted homomorphism of \(T \) into the top of \(I \).

Such a homomorphism is completely determined by its restriction to the socle \(\mathcal{S}(T) \) of \(T \), so all such homomorphisms are given by 0-restricted homomorphisms of \(\mathcal{S}(T) \) into \(\mathcal{S}(I) \), both of which are primitive inverse semigroups, and are easy to find explicitly.

THEOREM 4. - A groupoid \(S \) is a prime \(\omega \)-regular semigroup without 0-minimal ideals if, and only if, \(S \) is a rooted Brandt tree.

5. - The semigroups \(\mathcal{O}(A, w ; V, c) \) and \(\mathcal{O}[A, w ; V, c] \) do not seem to admit a neat isomorphism theorem, except in special cases. In the balanced case, using theorem 2, ([3], 4.1) and ([1], theor.4), we derive a satisfactory isomorphism theorem. A direct proof does the same in the case these semigroups are combinatorial. Isomorphisms of the semigroups in construction 3 are similar to those in [4], théorème 3.1, while isomorphisms of the semigroups in theorem 3 can be expressed by isomorphisms of \(I \) and \(T \) satisfying a commutative diagram.

REFERENCES

(Texte reçu le 15 septembre 1970)

Janet AULT and Mario PETRICH
Pennsylvania State University
Department of Mathematics
UNIVERSITY PARK, Pa (Etats-Unis)