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RATIONAL ELLIPTIC CURVES ARE MODULAR

[after Breuil, Conrad, Diamond and Taylor]
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Séminaire BOURBAKI
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Mars 2000

1. INTRODUCTION

In 1994, Wiles and Taylor-Wiles proved that every semistable elliptic curve over Q
is modular, in the sense that it is a quotient of the jacobian of some modular curve
(see [64], [60]). This work has been reported upon in this seminar in [50] and [41] ;
see especially [50, §1.2] for a historical account. As a consequence, Fermat’s Last

Theorem, known to be a consequence of this modularity result since work of Ribet
based on a conjecture of Serre (see [40]), was finally proved. For a more detailed

account of all this, see the book [15], and also [17]. Since 1994, this modularity result
has been generalized by an increasing sequence of groups of authors: [24], [14], and [4].
THEOREM 1.1 (Diamond). - Every elliptic curve over Q that is semistable at 3 and
5 is modular.

THEOREM 1.2 (Conrad, Diamond, Taylor). - Every elliptic curve over Q that ac-
quires semistable reduction over a tame extension of Q3 is modular.

THEOREM 1.3 (Breuil, Conrad, Diamond, Taylor). - Every elliptic curve over Q is
modular.

The method of the proofs is basically that of Wiles, i.e., for a given elliptic curve E
over Q one tries to prove that the mod .~ Galois representation on E(~) ~.~~ is mod-
ular for some prime number f, and then that all lifts ofPE,£ to f-adic representations of
a suitable type are modular. The second step involves studying deformations of Galois
representations, the systematic theory of which was initiated by Mazur, triggered by
work of Hida. The key result for the first step is the celebrated theorem of Langlands
[36] and Tunnell [61] that says that pE,3 is modular, as GL2(F3) is solvable and has
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a faithful two-dimensional complex representation. The complications that arise in
the proofs of the theorems above simply come from having to prove results as in
Wiles and Taylor-Wiles, but with fewer hypotheses. In particular, choosing the right
deformations of the restriction of to G~ := becomes much more

complicated if E does not have semistable reduction at ~.
The aim of this report is to give a reasonable sketch of the proofs of the theorems

above, to describe the relation to some conjectures by Fontaine and Mazur and

by Langlands, and to mention some related results. For some applications of the

modularity results above, we refer to [16]. The author of this report does not claim to
have checked the computations in [4], but he has studied [4] quite seriously and has not
encountered any real problem. Let us also state the following theorem (Theorem B
of [4]), whose proof is intricately linked to that of Theorem 1.3 above.

THEOREM 1.4 (Breuil, Conrad, Diamond, Taylor). - Every irreducible continuous

representation p: GQ - GL2(IF5) with cyclotomic determinant is modular.

2. RELATION WITH CONJECTURES BY LANGLANDS,
FONTAINE AND MAZUR

The Langlands program predicts, among many other things, that all L-functions

coming from algebraic geometry are in fact automorphic, i.e., arise from automorphic
representations. More precisely, every absolutely irreducible motive of rank n over
a number field F and with coefficients in a subfield E of Q should correspond to a

cuspidal algebraic automorphic representation of with coefficients in E: see

[10, Question 4.16], and the paragraph after that.
In that paragraph, Clozel explains how this conjecture relates to the conjecture of

Hasse-Weil type that says that the L-function of such a motive extends meromorphi-
cally to all of C and satisfies a certain functional equation. He finishes by remarking
that the only cases for which the Hasse-Weil conjecture has been proved are cases
where one actually proves the stronger conjecture, i.e., the existence of an automorphic

representation; this remains true after the work of Wiles and its generalizations.
Of course, if E is an elliptic curve over Q, the Langlands program predicts that

E is modular. Hence the modularity theorem for elliptic curves over Q is just a tiny

part of the Langlands program.
Fontaine and Mazur stated the following conjecture (Conjecture 1 of [32]).

CONJECTURE 2.1. - Let ( be prime, n ~ 0, and let p : Gal(Q/Q) ~ GLn(Ql) be an

irreducible continuous representation. Then p is isomorphic to a subquotient of some
etale cohomology group with X a smooth projective variety over Q, if
and only if p satisfies the following two conditions:

(1) p is ramified at only finitely many primes;



(2) the restriction to a decomposition group at l is potentially semistable (see
[31] for this notion).

In one direction, this conjecture has been proved: the are known to

be unramified at almost all primes, and the restriction to G~ is known to be potentially
semistable by work of Tsuji and de Jong (see [1, §6.3.3]). It is the other direction

that is even more spectacular: it is amazing that just these two conditions should

imply, for example, that the Frobenius elements at almost all primes have eigenvalues
that are algebraic numbers, and even Weil numbers, and that p should be part of a
compatible system of R-adic representations. The evidence that one has today for this
direction of the conjecture consists of the potentially abelian cases (treated in [32,
§6~; p occurs in the tensor category generated by representations with finite image
and representations which arise from potentially CM abelian varieties), and the cases
treated by Wiles’ method. However, see [39] for a representation that does satisfy the
two conditions above, but for which one does not know if it satisfies Conjecture 2.1.

Combined with the Langlands program, Conjecture 2.1 implies (Conjecture 3c of
[32]) that every 2-dimensional p satisfying the two conditions, up to Tate twist, either
has a finite image, or arises from a modular form of weight at least two.

Since the space of modular forms of a given weight and level is finite dimensional,
one also expects certain finiteness results concerning p as in Conjecture 2.1, which
become semistable over a given extension of Q, and are of fixed Hodge-Tate type:
see [32, §3]. Most of [32] is in fact concerned with a deformation theoretic study of
these finiteness conjectures.

Suppose now that 1 > 2.
For a given absolutely irreducible continuous p : one considers all

lifts p : i that are unramified outside a fixed set of primes. The l-
adic variety (over Qe) of such lifts is conjecturally three dimensional. Now suppose
moreover that is absolutely irreducible. Then the variety of lifts of is smooth
and of dimension five by [42, Thm 4.1]. Since one expects the locus of global lifts
that are potentially semistable and of a given type (i.e., Hodge-Tate type at R, and
semistable over a fixed extension of Q) to be zero dimensional, one expects that the
locus of such local lifts is of codimension three in the five dimensional variety. Indeed,
in the crystalline case with Hodge-Tate weights in the interval [0, .~ - 1], this was
proved in [42] (moreover, the two-dimensional space is smooth). We note that, by [3],
"potentially Barsotti-Tate" is equivalent to "potentially crystalline with Hodge-Tate
weights in [0,1]" (we recall that 1 > 2).

Of course, the computations done by Ramakrishna and by Fontaine and Mazur
are not directly in terms of representations of G~. Ramakrishna uses the results of
Fontaine and Laffaille, and Fontaine and Mazur work with filtered (~, N)-modules.
We note that by recent work of Colmez and Fontaine, ~11~, one actually has an equiva-
lence of tensor categories between semistable .~-adic representations of G.~ and weakly



admissible filtered (~, N)-modules, which makes it possible to translate problems on
the Galois side into problems in linear algebra, even more than before the equivalencebetween "weakly admissible" and "admissible" was known. On the other hand, what
is still not available in this generality is a theory that works for Ze-lattices instead of
~~-vector spaces.

3. REVIEW OF WILES’ METHOD

Before turning to the work of Breuil, Conrad, Diamond and Taylor, let us reviex;
Wiles’ method. Good references for this part are [17], [15], [50], [41], and of course
[64] (the introduction of which gives the story of the proof) and [60]. For simplicity,
we only discuss this method in a case that suffices for modularity of semistable elliptic
curves.

Let E be a semistable elliptic curve over Q. The first observation is that there are
many elliptic curves E’ over Q such that E[5] and E’ [5] are symplectically isomorphic;
this is due to the fact that the modular curve that parameterizes such E’ (over Q-
schemes) is a non-empty open part of P1Q. One proves that there is such an E’,
semistable, and such that the representation GL2(F3)
is surjective (see [50, §3]). By Langlands and Tunnell, the representation pE,,3 is
modular. The aim is now to show that pE~,3 : Aut (E’ (~) ~3°~~ ) ^-_’ )
is modular, by showing that all 3-adic lifts of with reasonable properties are
modular, and hence so is E’. Before we discuss how that works, let us see how one
then establishes the modularity of E itself.

Of course, if is surjective, then we could have taken E’ = E, so let us assume
that is not surjective. Then E[3] is in fact reducible (this uses the semistability
at all primes; see [50, Proposition 1]). But then P E,5 is irreducible, or E- is isogeneous
to the elliptic curve Ei over Q that has j-invariant -5~293/25, as one sees by looking
at the modular curve Xo(15), which has genus one and exactly eight rational points,
four of which are cusps (see [46, §2.1]). The elliptic curve Ei has a model over Q with
conductor 50, which can be checked to be modular. Since modularity is invariant
under isogeny and twisting, we may now assume that pE,5 is irreducible, and hence
surjective ([50, Proposition 1]). In this case, we already know that is modular,
because E’ is, and one proves the same type of result for modularity of 5-adic liftings
as in the 3-adic case.

Let us now give a precise statement of these lifting results. We need some termi-
nology and notation, adapted to the type of representations that we are interested in,
i.e., those coming from modular forms of weight two. For each prime p, we choose an
embedding ~ --~ Qp, and we let Gp and Ip denote the corresponding decomposition
and inertia subgroups of GQ. We let E: GQ - Z*l denote the l-cyclotomic character,
given by the action on the elements of i-power order in Q*.



DEFINITION 3.1. - Let .~ be a prime number, and k a finite field of characteristic .~.
Let R be a complete local noetherian ring with residue field k, and let M be a free
R-module of rank 2 with a continuous action by GQ; a choice of basis then gives a
continuous representation p : GL2 (R) . For p prime and di, ff ’erent f rom ~, M is
called semistable at p if, with respect to a suitable basis, is of the f orm ( 01 ) . The
representation M is called Barsotti-Tate (at ~~ if for each finite quotient M of M there
exists a finite group scheme A4 over ~~ such that M and are isomorphic as

The representation M is called semistable at l if it is Barsotti-Tate
or if, with respect to a suitable basis, 03C1|Ip is of the form ( o i ).

THEOREM 3.2 (Wiles, Taylor-Wiles). - 2 be a prime number. Let K

be a finite extension of 0 its ring of integers, and k its residue field. Let

p : GL2(0) be an odd continuous representation such that:

(1) its reduction p: GL2(k) is modular and its restriction to the quadratic
subfield of is absolutely irreducible;

(2) is semistable ;
(3) p is ramified at only finitely many primes;
(4) det(p) = ~;
(5) for every p - -1 mod ~ such that is reducible, is reducible too.

Then p is modular.

In view of what has been said above, this result implies that all semistable elliptic
curves over Q are modular. Wiles’ strategy to prove Theorem 3.2 is to compare

systematically all deformations of p with certain properties when restricted to decom-
position groups to those coming from modular forms of a given level. For simplicity,
we will now assume that p is semistable at all primes, and follow the exposition in
[41], with some modifications, anticipating our discussion of [24], [14] and [4].

So suppose that p is as in Theorem 3.2, and moreover that p is semistable at all
primes. We will now forget about p, for the moment, but keep p. So p is a continuous
representation of GQ on a 2-dimensional k-vector space, with k a finite extension of IF £
with ~ 7~ 2, and has the following properties: it is modular, absolutely irreducible after
restriction to the quadratic subfield of ~(~c~), semistable at all primes, and det(p) _ ~.
As nothing about these hypotheses changes if we replace k by a finite extension of
it, we may suppose, for example, that the characteristic polynomials of the p(a), a
in Go, are all split. Let 0 be the ring of integers in a finite extension K of ~~, with
residue field k. (Later in the proof, we need a modular form of "minimal level" giving
rise to p, and with coefficients in 0.) For any finite set £ of primes we define two
0-algebras Ro,~ and as follows.

DEFINITION 3.3. - Let R be a complete local noetherian O-algebra with residue
field k. A de f ormation of p to R is a free R-module M of rank two with a continuous



GQ action, such that k ~R M is isomorphic to p. A de f ormation p is said to be of
type ~ if det(p) = E, and p is semistable at I and "minimally ramified" outside ~:

(1) and p is Barsotti-Tate, then p is Barsotti-Tate;
(2) U ~ ~~ and p is unramified at p, then p is unramified at p;
(3) if p tI- ~U~~~ and p is ramified at p (and hence semistable, with our hypotheses~,

then p is semistable at p.

With these definitions, there is, for each ~, a universal deformation ring Ro,2:. that
represents the functor that sends R to the set of isomorphism classes of deformations
of type £ over R. A very good reference for this is [20]. If K - K’ is a finite

extension, then = 0’ ~Q Ro,~.
Let us now turn to the definition of The reader is referred to Appendix A

for certain properties of the Galois representation p f associated to a modular form

f of weight two with coefficients in ~~. We define N2:. to be the set of weight two
newforms f with coefficients in ~~ such that p f : is of type ~, where

Of is the sub-0-algebra of Qf generated by the coefficients of f. The results in

Appendix A imply that there is an integer N2:., such that for each f in N2:., the level
of f divides N2:.. This implies that N2:. is a finite set. One can take N2:. as follows:

where 6 is 0 if p is Barsotti-Tate and £ not in E, and 03B4 is 1 otherwise, and where N(p)
is the level associated to p by Serre in [49] (i.e., N(p) is given by the usual formula

~ 

for the Artin conductor of a representation, in terms of the ramification subgroups at
all p ~ ~). The reason that such a N~ suffices is that the wild parts of the conductors
of Pi and Pf are equal. For simplicity, we will now only consider E that do not
contain primes dividing N (p) (this suffices for the application to semistable lifts of p).
For each f in we have a morphism Of, and we define to be the

image of in the product of the Of. Since Rr is generated, as (9-algebra, by the
traces of elements in the universal representation, To,L. is generated by the elements

ap : for p not dividing 
The method of Wiles is now to show that the surjections Ro,L. -4 are

isomorphisms, by studying how they change as E varies. The first step in this

is to use what has been proved about Serre’s conjectures on modularity of mod ~’

representations in [49]: is not empty (see [45] and [22]). This implies that we

can suppose (and we will) that we have a section 7r = ~~ - O. We let P~
denote the corresponding 0-valued points of and Spec(Ro,), for each E.
Wiles introduced the following 0-modules associated to each E: on the one hand the

cotangent spaces at the P, i.e., and ~s~o s/~ and on the other hand
the "module of congruences" defined as follows. Since T o, is finite free as

0-module, Spec(Q ~) is the disjoint union of two open and closed subschemes

P,K and with P,K consisting of the point P(Spec(K)). We let Zs be the



scheme theoretic closure of in (note that the are reduced by
construction). These modules, that will intervene only via their lengths, are usually
introduced as and (This last module has
finite length if and only if Spec(Q 0 is reduced at 

The fact that represents the functor of isomorphism classes of deformations
of type E implies the following Galois cohomological description of 

where p is the representation corresponding to P = Ps, where ad°(p) is the represen-
tation of GQ on the sub-O-module of trace zero elements of Endo (Mp), and where
H~(GQ, K/O) denotes the subgroup of Hl (GQ, K/O) of classes that
map, at all p, to the subgroups L~,p of the K/O) that reflect the
conditions for deformations to be of type E. To be explicit, these are:

-- Ls,p = H1(Gp/Ip,(ad0(03C1) ~ K/O)Ip) if {l};
-- LE,p = Hl(Gp, K/O) 
-- is the subspace of that corresponds to deformations

that are Barsotti-Tate, E;
-- is the subspace of K/0) that corresponds to deformations

that are semistable at f, if £ E E.
The results of Poitou-Tate on local duality and global Euler characteristic show that,
for M a finite discrete GQ-module, with a Selmer datum Lv C Hl (Gv, M) at all places
v of Q, one has:

where M* is the Cartier dual Hom(M, ~*) of M, and where, for each v, Lv is the
orthogonal of Lv. Moreover, if L C L’ are two Selmer data for M, then one has an
exact sequence:

Having established this, Wiles first proves that 1ro,ø is an isomorphism,
and then that this remains so if one enlarges E. The argument for the first step is
really amazing, he somehow manages to "patch", for a suitable sequence of 1:n, the

and the into power series rings, with the same number of generators, and
deduce from that that is an isomorphism. (This patching argument was
introduced in [60], and used to show that To,ø is a complete intersection, but Faltings
pointed out that one could also use the argument directly in proving Ro,~ --~ To,ø to
be an isomorphism.) We will now take a closer look at this argument, in order to see



which conditions have to be satisfied by the type of deformations that one considers
for it to work.

So suppose that one wants to do this argument for The primes p that
one wants to add to E are congruent to 1 modulo a high power of ~, and such that

p is unramified at p with distinct Frobenius eigenvalues in 1~* . For such a p, and

for ~’ containing p, is a direct sum of two characters, whose restrictions
to Ip factor through the i-part Ap of (Z/pZ)*. Choosing
one of the two Frobenius eigenvalues gives the structure of an O[Ap]-algebra.
The ~’ that one wants to consider are of the form ~’ _ ~ U Q, with Q a set of r

elements, for some fixed r, and such that can also be topologically generated
by r elements. (Note that is an algebra over 0[Ao] with = 03A0p~Q 0394p,
and that 0[AQ] looks more and more as a power series ring in r variables, as the
primes p are closer to 1, 1-adically.) Let L and L’ be the Selmer data corresponding
to E and ~’. Then dimk ~v = r, so one finds, by the exact sequence above,
that dimk H1L (GQ, ado(p)*) > ado(p))). But in the displayed formula
above, one has dimk Lp 2 dimk ad° (p)IP ) = ado(p)), for all

whereas dimk Loo = 0 and dim ad° (p)) = 1 . Moreover, in that formula

one has M) = 1 (since p is absolutely irreducible), and = 1

(since the restriction of p to the quadratic subfield of is absolutely irreducible).
It follows that this setup can only work if Lp = Hl (Gp /Ip, ad° for all I; and

 1 + dimk ad0(03C1)Gl. This means that £ must be M3, and that Ll must be

of dimension 1, unless 1. This last condition puts a very strong restriction

on the type of local deformations at £ that one can use. 
>

In order to prove that is an isomorphism, Taylor and Wiles use that,
in their situation, the localization at p of 0) is a free 
and similarly for the ~’s that they choose. Such results are quite delicate to prove. In

the next section we will discuss how Diamond and Fujiwara have gotten around this,

and actually obtain such freeness results as a consequence of the method. In [17], the
freeness assumption is not used, but the given proof still relies on q-expansions (see
[17, Remark 4.15]).

Let us now briefly discuss how Wiles proved that the RO,03A3 ~ To,E are isomor-

phisms. This is done by induction on the number of elements of 03A3, but, in order

to carry out this induction, one actually proves more, namely, that these O-algebras
are complete intersections. Indeed, Wiles found a criterion for doing the induction,
in terms of the changes of the lengths of and when comparing

between £ and ~’ := E U ~p~. On the Galois side, the exact sequence above gives an

upper bound for the length of /0’ 
On the Hecke side, [17, §4.4] gives a new

proof of the lower bound for the length of that was proved by Wiles. This

proof does not use freeness, and it nicely relates this change of length to the residue at

2 of the L-function of the symmetric square of the system of representations associated



to P, giving a relation to the Bloch-Kato conjectures. Wiles’ argument, which is to

compute the composite Jo (N~~ ) -~ Jo (N~ ), is also sketched in [17, ~4.4~ .

4. IMPROVEMENTS OF THE COMMUTATIVE ALGEBRA PART

The results in commutative algebra that are used in [14] and [4] are improvements
of those in [64] and [60]. These improvements were found independently by Diamond
[25] and Fujiwara [33], motivated by Fujiwara’s work on modularity over totally real
number fields. We also note that Lenstra, de Smit, Rubin, and Schoof have established
isomorphism and complete intersection criteria as in Wiles, without the Gorenstein
hypothesis, and without the limiting process, see [21]. Let us now state the criteria
as in [25, Theorems 2.1 and 2.4].

THEOREM 4.1. - Let k be a finite field, and r > 0 an integer.
Let A :== ..., Sr~~, B := ..., X7..~~, let R be a k-algebra, and let H be

a non-zero R-module that has finite k-dimension. Suppose that for every n > 1 one
has a commutative diagram:

and a B-module Hn with a morphism 03C0n : Hn - H such that as an A-module, Hn
is free over A/mA, and such that the morphism k ~A Hn -~ H induced by ~rn is

an isomorphism. Then H is free over R, and R is a (zero dimensional) complete
intersection.

In the application of this result, k is as above, A is a projective limit of k-algebras
of the form l~~~Q~, with Q a set of r distinct primes p -1 mod ~n and the product
of the B is a projective limit of R and Hand Hn
come from (co)homology groups of modular curves. The freeness of Hn over A/mnA
basically comes from standard facts about cohomology of locally constant sheaves and
unramified covers of affine Riemann surfaces. The Hecke algebra k ~o is the

image T of R in Endk(M), so the conclusion that H is free over R implies that R = T.
The freeness version of Wiles’ numerical criterion is as follows.

THEOREM 4.2. - Let 0 be a complete discrete valuation ring with finite residue field
k, and let R be a complete noetherian local O-algebra. Let H be an R-module, finite
f ree over 0, let 03C6: R ~ T be the quotient by AnnR (H), and suppose that T has a sec-
tion T - O. Put 03C0R :_ Define 03A9 := + 
Let d be the O-rank of If S~ has finite length over D, then the following
are equivalent:


