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ELLIPTIC COHOMOLOGY

[after Landweber-Stong, Ochanine, Witten, and others]

by Graeme Segal

Seminaire BOURBAKI

40e annee, 1987-88, no.695

Février 1988

In recent years there have come hints from several directions that it is

useful to think of the space.eM of smooth loops in a manifold M as a kind of

natural "thickening" of M: one identifies M with the subspace of I.M consisting of

loops collapsed to a point. Ideally one would study the space of unparametrized

loops, but that is rather intractable, so one considers the space JLM of

parametrized loops instead, and works equivariantly with respect to the group of
- diffeomorphisms of the circle, which acts on ~M by reparametrization. The most

important stimulus to think in this way has come from the theory of strings in

particle physics, and has entered mathematics mainly through the influence of

Witten. In mathematics proper I would mention (a) Bismut’s work (e.g. [8 ], cf.

also [ 5 ]) on the probabilistic treatment of Atiyah-Singer index theory; (b) the

relation between loop spaces and cyclic cohomology described, for example, by
Goodwillie [13] and Getzler-Jones-Petrack [12], and the possible implications of

Goodwillie’s theorem for Waldhausen’s work on the classification of manifolds;

(c) Floer’s definition of "middle-dimensional" cohomology groups for the loop

space of a symplectic manifold.

One sign that there may be rich undiscovered geometrical properties of loop

spaces is the existence of elliptic cohomology. What is known about this at

present does not, strictly speaking, involve loop spaces at all, and can be

obtained by standard methods of algebraic topology. In that context, however,
the results are mystifying, and Witten has explained heuristically how they fall

naturally into place in terms of analysis on loop spaces. I have not attempted
here to describe the history of the subject, which can be found in the excellent

collection [1 1 ]. The main concrete results so far seem to be the equivalent
characterizations of elliptic genera ((2.1) and (3.7) below), the existence of the

elliptic cohomology theory EQQ*, and some information about EQQ*(BG) when G is a

finite group.

S . M. F.

Asterisque 161-162 (1988)



2. GENERA

A genus is a rule which associates to each closed oriented manifold M a

complex number 4l (M) satisfying

(i) ~ (M~ u M2) - ~ (M~ ) > +~(M~) , ,

(i1) ~ (M~ x M2) - ~ (M~ ) .~ (M2) , , and

(iii) ~ (M~ ) - ~ (M2) > if M1 and M.. are cobordant.

In other words, 03A6 is a ring-homomorphism 03A9 ~ cr, where [2 is Thorn’s

oriented cobordism ring. The best-known genera are the signature (of the

intersection form on the middle homology) and the They take values in

Z and ZZ [1 2] respectively. The Euler number X(M) is not a genus, as it is not a

cobordism invariant.

Thorn proved that [2 0 B is a polynomial ring ~P ~P ... ] on the classes

of the even-dimensional complex projective spaces. To give a genus ~ is therefore

the sane thing as to give the formal power series

The signature and the A-genus possess a stronger multiplicativity property
than (ii). The signature satisfies ~ (M) - ~ (F) .~ (B) whenever M is a fibre bundle

on B with fibre F and compact connected structural group. The A-genus has the same

property when F is a spin manifold. The natural question of finding all

formal power series log. for which ~ has this stronger multiplicativity is
answered by

THEOREM (2.1). The genus 03A6 is multiplicative for al,l, bundZ,es of spin manifolds
with compact connected structural, group if and only vf log03A6 is an elliptic

integral, i.e. of the form

for some 6,e E (E.

Such ~ are called elliptic genera. One can take them all together, and speak

of a universal elliptic genus ~(M) whose value is a function of d and E. The

’only if’ part of (2.1) was proved by Ochanine [19], and also the ’if 
I 

part when

the fibre is P2n+1. The remainder was proved by Taubes [25].

The integral (2.2), if the discriminant ~2(~2-~) is non-zero, is the inverse

function of an odd elliptic function s which is uniquely characterized by its

period lattice L together with the fact that it vanishes at one point w of order

two in (E/L. (It has a pole at the other two.) The integral has the homogeneity

property that replacing (6,e) by (X 6, A e) changes L to À -1 L and ~(M) to



(M). Thus (cf. [24] ) as a function of (L,w) the elliptic genus ~ (M) defined

by (2.2) is a modular form of weight 1 2dimM . One usually normalizes it so that
L = 203C0iZZ + 403C0i03C4ZZ and w = 203C0i03C4, I with T in the upper half-plane H. Then 03A6 (M) is a

holomorphic function of T E H which is modular of weight 1- dimM under the subgroup

r 0 (2) of PSL2 () which preserves the half-period point w . Alternatively, as w

defines a spin-structure on the elliptic curve one can say that there is an

elliptic genus for each elliptic curve with spin-structure. The space H/r~(2) is

compactified by the addition of two cusps T = 0, T = ioo where the curve

degenerates. These points correspond to the signature and A-genus. In terms of

q = e 2TIiT we have

It is striking that the universal elliptic genus of a spin manifold is the

character of a virtual projective unitary representation of the group Diff(S1) of
diffeomorphisms of the circle. More precisely, if R T E Diff (S 1) is rotation by T,
then there are projective unitary representations E., such that
~(M) (r) = tr (RT EM) - as hyperfunctions of T. In particular, ~(M) has

integral coefficients when expanded in powers of q.

3. CHARACTERISTIC CLASSES AND EQUIVARIANT GENERA

PROPOSITION (3.1). Any genus 03A6 can be expressed uniquely in the form

where [M] E H*(M) is the fundamental class, TM is the tangent bundle of M, and
~ : : KO( ) -~ Heven( ( is a stable exponential characteristic class for real

vector bundles.

Here exponential means that  (E ® F) - ~(E).~(F), and stable means that

~ (R) = e 1 0 in (E.

This result of Hirzebruch is well-known [~g], but recall that (3.2) defines

a cobordism invariant because if M = 3W then

An exponential characteristic class is determined by its value on 11R’ the real
bundle underlying the universal complex line bundle n on P~, and can be an

arbitrary even element of where u E H . Thus 03A6(~R) = p (u) ,
say is a second formal power series associated with ~. The stable tangent bundle
of Pn is (n+1)~R-2, so (3.2) shows that 03A6(Pn) is the coefficient of un in
e ~p~(u)n+1, and Lagrange’s formula for reversion of series ([10] p.125) gives



PROPOSITION (3.3). is the inverse power series to u/p.(u), 

e2log03A6 (x) = u ~ u/p03A6 (u) = x.

Proposition (3.1) can be restated in terms of K-theory, for the Chern

character gives an isomorphism ch : K(X) ~ Heven(X;).

PROPOSITION (3.4). 03A6(M) = 03C0M!(03A6(TM)) ,
where 03A6 : KO ~ K is a stable exponential characteristic class, and

7r" : K(M) 0 (E -~ c is the Gysin map in K-theory corresponding to M -~ point.

By the topological Riemann-Roch theorem [11] ] we have ir, (E) = ch(E) .A (T ) , [M] >, I
and therefore ch03A6 (E) = (E)-1.03A6(E).
EXAMPLES

(i) A(M) = ~rM(1 ) . .
(ii) signature (M) = ~rM . ( ~ (TM) ) , where 0 (TM) is the spinor bundle on M. (As a

characteristic class for real bundles one defines A (E) = A (E ) , where E = E 0 !E

and A is the exterior algebra. )

(iii) x(M) = ~rM(11-1 (TM) ) , ~-1 _ ~even - This is unstable.

(iv) From (2.3) and (3.3) we find that when ~ is the universal elliptic genus

There are two advantages of (3.4) over (3.1). The first is that the Atiyah-

Singer index theorem provides an analytic construction of when M is a spin
manifold. In fact is the index of the Dirac operator D which maps

sections to sections of A _ (TM) ~ E. In particular A(M) is an

integer when M is a spin manifold, and more generally

PROPOSITION (3.6). For a spin manifold M the universal elliptic genus belongs to

S[[q]].

The second advantage of (3.4) is to make clear that when a compact Lie

group G acts smoothly on M the value of any genus is naturally an element ~G(:a) of
the complex character ring R(G) 0 Q; = K (point) 0 (E. For any exponential

transformation in K-theory is a unique polynomial in the exterior powers, and

makes equally aood sense for G-vector-bundles [ 4 ] ; and the Gysin map is also

defined for KG. (Thus when M is spin the index of D is a virtual representation
of G.)

We can now state an equivalent version of Theorem (2.1).



THEOREM (3.7). Elliptic genera ~ are characterized by the property that if a
compact connected group G acts on a spin manifold M thenG(M) is constant as a
function on G.

Remark. G mayor may not act on the spin bundle of M, but if not - the so-called
odd case - then a double covering G of G acts, and  G (M) is a constant function on G.
But it is zero as it takes opposite values on the two elemsnts of ker : G -~ G.

Proof that (3. 7) =~> (2.~~. Consider a spin fibration f : M -~ B with fibre F and
structural group G. We have by the functoriality of Gysin maps, and

TM = TM/B’ where TM/B is the tangent bundle along the fibres, so

is an element whose augmentation is ~rFll~ (T ) - ~ (F) , °
It is clearly the image of the equivariant index of F under the map R(G) -~ K(B)
defined by the principal bundle of M -~ B. But by (3.7) it is constant and hence

equal to its augmentation. So ~(M) - ~(F).~(B).

Proof that (2.~) =~> (3.~~. It is enough to prove (3.7) when G is the circle.
Let F be a spin manifold with circle action. We must show that ~~,(F) - ~(F) when
~ satisfies (2.1 ) . It suffices to show that ()) = ch (~~,(F) - ~ (F) ) vanishes in
H*(P~) - (E [ [u] ]. Let F~ be the bundle on with fibre F associated to the

T-action. Our formula shows that the discrepancy 6 = ~( n) - ~(F)~(Pn) is the
coefficient of un in ~.e "2 ’p~(u) n+1 . By Lagrange’s formula, already used to
obtain (3.3), we find that if x = u/p.(u) then

= 0 if and only if all 6 are zero.
We shall not prove (2.1) or (3.7) here, but make only the following remarks.

Ochanine proved that the power series log03A6 is an elliptic integral if and only if
the genus ~ vanishes for all fibre bundles with fibre P2n+1. (Notice that
~(P2n+1) - 0 because is null-cobordant.) His method was a direct c omputa-
tion, but very ingeniously arranged. On the other hand Taubes considered the
equivariant universal elliptic genus ~q for a spin manifold M as a function of
À GT and q = Following an idea of Witten (to which I shall return in §4)
he observed that ~q(M)~ extends to a meromorphic function which
satisfies ~q(M)~ ° that it is an elliptic function defined on the
torus (q 2). Then he proved it has no poles, and is therefore constant. The

meromorphicity and ellipticity follow at once from the localization theorem in
equivariant K-theory [7 ], which can be stated as follows.



PROPOSITION (3.8). Let M be a manifold with T-action, and F the submanifold of
fixed points Then the value of the character at 03BB ~ T is given by

providing a is not of finite order. Here NF is the normal bundle to F in M,

0394-1 = 0394+ - 0394-, and on the right-hand-side elements of KT(F) ~  are identified
with functions from~" to K(F) ® T.

To obtain the elliptic (T ) M (TM) } , ignoring
the constant f actor a ( T ) in ( 3 . 5 ) . By ( 3 . 8 ) we f ind

where ~ E K(F) is independent of ~, and ’{f is the exponential operation given
on line bundles n by

Now (N ). = say. So 03C8(NF)03BB = Because 03C8(~) as a meromorphic

function of changes sign when n is replaced by qn we can conclude

that and has the same property as a function of l.

4. WI’ITEN’S EXPLANATION: ANALYSIS ON LOOP SPACES

One would like to see how the universal elliptic genus arises naturally. A

satisfactory account must explain (i) its rigidity under group actions, (ii) its

modularity , and (iii) why it is a virtual representation of Diff (S 1). Witten

[26] / [27] 1 has given what is obviously the right explanation, but in terms of the

mathematics of two-dimensional conformal quantum field theory, which has not yet

been fully developed.
Without mentioning field theory one can at least say that formally the

elliptic genus is the equivariant index of a natural differential operator on J~M.

The operator commutes with the circle action on CM which rotates the loops, so its

index is a virtual representation of T . In fact each character q ~ q of T occurs
with finite multiplicity, and only positive energy characters (those with q z 0)

occur at all. So the index is a formal power series Eakq with ak E Z. This is

the elliptic genus. But to define the operator even formally we must digress to

consider the theory of spinors on ~M.

Suppose that M is an oriented Riemannian manifold. At a loop y E LM the

tangent space T to ~M is the space of tangent vector fields to M along y, i.e.

the space of sections of Y*TM on S~. Covariant differentiation along y is a skew

operator D/D8 in T , and gives a decomposition T03B3 = W C N 8 W, where N = ker(D/D8)
is finite dimensional, and -iD/D8 is positive-definite on W. If we define an

operator JY in TY as i ~ 0 ~ (-i) with respect to W 0 N C W, then TY is polarized



in the sense of

DEFINITION (4.1). (i) A polarization of a real pre-Hilbert space E is a class of
skew operators J : E + E, any two differing by a trace-class operator, such that
J2 + 1 is of trace-class.

(ii) The subgroup of the orthogonal group of E which preserves the polariza-
tion is called the restricted orthogonal group °res(E).

The polarization reduces the structural group of the tangent bundle to

0 res (E) , where E = and n = dim M.

The group has two connected components, and has the homotopy type of

lim 02n/0 , i.e. of the loop space of lim SO2n [20](12.4). ° In particular it makes
sense to ask whether the bundle TM is orientable. Its classifying map
M ~ BOres (E) ~ lim SO2n is clearly got by looping the classifying map M ~ BSO2n
of TM, and as w2 E transgresses to the generator of we

have

PROPOSITION (4.2). JLM is orientable if and only if M is spin.

To define spinors on J:M we recall that the group Ores(E) possesses a
projective spin representation ([20] Chap. 12 ) on a Hilbert space
A (E) - 0+ (E) C A (E). It is defined on a central extension of 0 res (E) by T
described topologically by the generator of H2(0 ;Z), which is the double
transgression of the Pontrjagin class p1 E ° Hence we have

PROPOSITION (4.3). There is a bundle of spinors on ~,M if and only if p1(M) - U,
A spinor bundle on ~,M is automatically a module for the Clifford

bundle of so formally one can define a Dirac operator ~3 acting on sections
of A, and also an operator DE acting on sections of E 0 A when E is any other
bundle on ~M. Assuming this makes sense let us blindly apply the localization
theorem (3.8) to calculate the index when E isT-equivariant. The fixed
points are the constant loops M so (3.8) gives

The fibre of the normal bundle NM at m ~ M is where is thetangent space to M at m. By Fourier series NCM is identified with 0 qkTCM, and
0394-1 (NM) with A_, (~ qkTCM) = S -1. Thus

(It is usual to include the not obviously meaningful factor (det(e q~))"~ in
This amounts to a way of normalizing the protective representation. As
is trivial the factor is interpreted simply as 

= q1 24 M. When it is inserted the expression (4.4) can be shown [28] to be a



modular function under PSL2 () when p~(M) - 0.)
At present, however, we are concerned not with$1 itself but with ~~, I .e. 9

with coefficients in the spin bundle of LM. This is the operator whose index is

the signature in finite dimensions. The localization formula gives

This is the universal elliptic genus, except for the uninteresting factor

a(T)-dimM (cf. (3.5)).

To def ine ~~ one does not actually need the bundle 6 globally on ~,M, but
only the product A 0 A, graded by A 0 6-. In finite is

just A(E ), and the grading is that given by the Hodge star operator. Its

existence does not require a spin structure, but only an orientation.

Correspondingly~~ is defined - formally - on J:.M when M is spin, even if p1 (M) ~ 0.
I shall attempt below to make the use of the localization formula onJLM seem

a little more reasonable, but first I shall give Witten’s explanation of the

rigidity of the elliptic genus under group actions. As we know from §3, the

essential point is that, for a spin manifold M with T-action, 03A6q (M)03BB extends from a
function of À to one defined on the torus To see this, consider for

each À 6 T the twisted loop space consisting of smooth maps y : R -~ M such

that ~ ( 6 + 2ir) - ~ . Y ( 8 ) . There is, we assume, a corresponding family of Dirac

operators ~~ ~ ~ . But whereas ~,M has a ~’ x ~‘ -action got by independently rotating
the loops and translating them by theT-action on M, the twisted space .C,.M has a
natural action of the torus T. where if x = the lattice L. is
spanned by (0,1) and (1,-Q). The characters of T. form a discrete set, and each
occurs with finite multiplicity in the index of ~a~~. The homotopy invariance of

the index makes us expect that the multiplicity should be independent of a. But

as ~ moves once round T the character (q,~,) r+ of T = T1 moves
continuously to (q,~,) H . 

I~ = ~(M). .
The idea of the Dirac operator~ motivates the definition of the elliptic

genus and accounts for its rigidity. It does not explain the modularity or the

role of Diff (S ): indeed Diff (S ) does not act by isometries on £M, and certainly
does not commute wi th 9). To go further one cannot avoid conformal field theory.

One approach is in terms of functional integrals. On a finite dimensional

manifold M recall [6 ] that the index of the Dirac operator D is the supertrace

of etD 2 for any t > 0. More precisely, D is an operator of degree 1 on the mod 2

graded space r+ ED r- of spinor fields. So D2, which is the Laplacian, preserves
the grading and is negative semidefinite. The supertrace is defined by

The trace and also the supertrace of e 
l 

can be calculated as integrals over,~ M,



although that is a long story [ 5 ], [ 8 ]. If a group G acts on M the character-

valued index of D at g E G is given by a corresponding integral over the twisted

loop space LgM already mentioned.
Optimists will believe that an analogous discussion applies to the Dirac

operator ~ on ~.M. The index ought to be an integral over i.e. over the space

of maps of a torus into M, and the equivariant index likewise. In general terms

the fact that the elliptic genus of M is a modular form, i.e. a function of a
/

torus, is explained in this way. A mathematical treatment of the theory by
functional integration seems, however, out of sight at present, so I shall not

pursue it further.

The primary difficulty in defining a genuine Dirac operator % on LM is to
find a suitable Hilbert space ~ of spinor fields on which it will act. Conformal

field theory, however, predicts the presence of an elaborate structure on the

space ~ which to an earthbound mathematical eye is quite unexpected. In

good cases the natural (projective) action of Diff (S 1) on ’i9 should extend

canonically to a projective unitary action of Diff(S1) x Diff(S1)
( = DiffL x Diff, say) inside which the geometrical Diff(S1) is the diagonal

subgroup. This makes a great mathematical simplification: one reason is that the

natural action of Diff (S 1) on ~ is neither of positive nor of negative energy,
whereas DiffL and DiffR act with positive and negative energy respectively.
Better still, 1’- = + ~ - is supersymmetric with respect to the action of DiffR,
in the following sense. First recall [15] that the Lie algebra Vect (S 1) of
Diff(S ) is the even part of a Lie superalgebra whose odd part is the space

S~-~(S1) of smooth (-§) -densities on S1: the natural pointwise product of two
elements is a vector field. To say that ~ is supersymmetric under Diff
means that the action of its Lie algebra is the even part of an action of the

superalgebra on the mod 2 graded space ~. Thus if D : :’~± ~ 9~~ is the action of
a = a(6)d6 ~ 2014t then D2 is the action on 3i of the vector field a(6) -~ d/d8 belonging
to The Dirac operator.@. is simply D when a = d03B8-1 2. It therefore commutes

with DiffL, and its index is a virtual representation of DiffL. But it does not

commute with DiffR or with the geometric action of Diff(S1) on .
The existence of % for a general manifold M is problematical. One can,

however, construct a good approximation to it with the right formal properties by
restricting attention to the normal bundle 1VM of M in .CM. We have already
remarked that the fibre of the normal bundle is V = so let us first

consider the Dirac operator on V.

We can define a Hilbert space of square-summable functions L ~ (V) by prescrib-
ing that it contains all functions v""+ where A = (-(d/d8) 2) ~ and f
is a polynomial on V. A better description of L2(V) is got by using d/d8 to

polarize V, so that V~ = W @ W, and we have two Bosonic Fock spaces S (W) and S (W),



each a unitary representation of Diff (S 1) - cf. [22]. Then the Heisenberg group

([20] ] p.188 ) of V acts unitarily on S (W) by operators which obey the Weyl

relation

where S (f,g) = Jf,dg>. The matrix elements of this action identify S (W) 0 S (W) i
with a space of functions on V which is precisely L (V) . This shows that Diff (S 1)
acts unitarily on L2(V), and also that the action extends to DiffL x DiffR.

To understand the Dirac operator on V first observe that if V. = ~(S ;R~)
then V 0 V1 is a graded module for the Lie superalgebra Vect(S ) @ Q ’ (S 1 ), . an
element w E. S~ ~ maps V 1 to V by multiplication, and V to V1 by f ~ wdf . The skew

form S on V fits together with the natural symmtric form on V1 to define a

"super-skew" form on V C V1 which is invariant under Vect C S~-~. Thus V 8 V 1 has
a Weyl/Clifford algebra A(V) 0 C(V1) whose natural irreducible module is
S(W) 0 I where = W1 0 W1 is the polarization. It follows that the

superalgebra Vect 8 S~ ~ acts on S (W) 0 A (W1 ) .
In obtaining (4.4) we took the fibre of the spin bundle of ,~M to be

0394 (03A90 (S1; Rn) ) = A (W), but we now see that the correct fibre is 0394 (03A91 2 (S1; Rn)) = A (Wl ) .
We should also stress that these spaces are not isomorphic to their complex

conjugates. Let us now define the space of L spinors on V to be

0 = L2 (V) 0 A(W ) = S (W) 0 S(W) 0 A (W1). We now know that this is acted on by

Diff x Diff, and is supersymmetric with respect to DiffR. We define the Dirac
operator D0 in H0 to be the action of the element Because its square

is (d/d8)R its index is simply S(W). °
We can now at least define rigorously the Dirac operator % There is

a bundle $9 on M with fibre H0, and the space of L2 spinors on NM is the space of
sections of 0394(M) ~HM. We define D = DM + DN, whored is the usual Dirac
operator of M tensored with ~M, andN is induced by the operator ~-~ fibrewise in
HM. It is easy to calculate the index for the bundle HM is bigraded by the
rotation action and is finite dimensional in each bidegree; and D2
preserves the bigrading. So the index of ~ is the index of the Dirac operator of

M tensored with the bundle index (S~ ) on M, i.e. tensored with S(W) = S(C q-1~) .
This goes some distance towards justifying the use of the localization formula in

(4.4).

5. ELLIPTIC COHOMDLOGY

We now return to classical algebraic topology. In the majority of

significant applications the integrality properties of a genus are crucial. These

are best discussed in terms of generalized cohomology theories. Let us consider



multiplicative cohomology theories h* in which 2 is invertible in h~ (point). We

shall denote the graded ring h*(point) by R.

An orientation of h* is an odd element 03BE E which restricts to the

canonical generator of h (P ) . (Odd means that -~ under complex conjugation
in P°°.) Choosing an orientation, if it is possible, gives one at once a great
deal of structure ( [ 2 ] , [ 21 ] ) , in particular :

(i) Chern classes (E) ~ for complex vector bundles E on X;
(ii) a Thom isomorphism hl (X) ~ hl+n (E+) for each oriented real n-dijnensional

vector bundle E on X;

(iii) Gysin maps f, : -~ for each fibration f : E -~ B whose fibre is

an oriented n-mnifold;

( iv) an R-valued genus where ~h (M) - ~rM ( 1 ) > E .

(v) a graded odd formal group law F over R, where

F(x,y) = ] is defined by (L @ M) - F(c 1 (h) (L) ,c 1 (h) (M) ) for

any two complex line bundles L and M.

Here E+ denotes the Thorn space of E, h*(X) = h*(X,point), and to say that F
is graded and odd means that a.. E R-2(i+j-1) and F (-x, -y) = -F(x,y).

Because of property (ii) there is a universal oriented theory 03A9* with a

canonical transformation ~* -~ h* to any other; ~* is oriented cobordism, and its
coefficient ring ~* (point) = R~ is Thorn’s ring with! adjoined. The universal map

l~ -~ h* (point) is 4lh .
EXAMPLE. Let R ] be the graded ring of modular forms for r 0 (2), where
d E R , E E R are as in (2.2), and let h*(X) = H* (X; R) . (Thus

0 The element s(u) of (2.3), regarded as an element of
H by taking u as the generator of is an orientation, and leads
to the elliptic genus. To see that the coefficient of uk in s(u) = s(u,T) does
belong to R-2k+2 observe that if (a b) E r (2) then

because both sides have the same double periodicity in u, the same zeros, and the
same derivative at u = 0. The formal group law of h* is Euler’s addition theorem
for the integral (2.2):

where r(x) = (1-2Sx2+~x4)~. Notice that F is defined over the subring S[i] [6,e].

Quillen made the very fruitful observation (cf. [2], [21 ] ) that the category
of oriented cohomology theories over 2Z[i] is very nearly equivalent to the
algebraic category of pairs (R,F), where R is an anticonrnutative graded ring over


