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ENTROPY, HOMOLOGY AND SEMIALGEBRAIC GEOMETRY

[after Y. Yomdin]

by M. GROMOV

Seminaire BOURBAKI

38eme annee, 1985-86, n° 663

Juin 1986

1. COMPUTATIONAL DEFINITION OF TOPOLOGICAL BNTROPY

1.1. The entropy of a partition n of a set X into N subset is defined by

The intersection of two partition say 03A01 ~ II2 , is the partition of X into

the pairwise intersections of the elements of 03A01 and IT2 .
For a map g : Y .~ X cne obviously defines the pull-back partition of Y

denoted 03A0g for every partition n of X. If f is a self mapping 
X ~ X one

consideres the pull-backs of n under the iterates f = f ,
and set

Similarly, if Y is mapped into X by g cne defines

1.2. Let X be a cubical polyhedron, that is a topological space divided into

cubes a , such that every two cubes meet at a common face. Denote by 11 the

partition of X into the open (i.e. taken without boundary but not necessarily

open as subsets in X) cubes of the polyhedron X and let lI(j) be the refine-

ment of n obtained by dividing every a into equal subcubes. Now define

the topological entropy ent f of a map f : X ~ X as the lower bound of the

numbers h > 0 with the following property :

(P) There exists an arbitrarily large integer k > o (depending on h ) such that

S. M. F.
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In the same way one defines ent fl Y for every space Y mapped into X .

This definitim is justified by the following easy theorem.

1.3. Topological invariance of the entropy. If X is c.ompac.t and f is continuous

then ent f does not depend on a 06 the polyhedral structure on

X . The same applies to ent f|Y for compact spaces Y mapped 
X . Moreover, if X .us dimensional and Y ~ X is a c.ompac.t subset inva-

riant under f then ent f|Y only depend.6 on Y and f : Y ~ Y (but not an embed-

dlng Y ~ X ) , , provided the map f is continuous an Y .

1.4. Remanl2. Consider the list of IRn into unit cubes which

are the faces of the integer translates of the cube xi  1 , i = 1...n} c~ .
The entropy defined with this list is not topologically invariant over all B~ .

Yet it is invariant en every canpact subset Y , such that f is continuous on Y

and f (Y) c Y . Thus one obtains an invariant entropy for a continuous selfmaps of

an arbitrary finite dimensional compact space Y , since Y enbeds into some 

1.4. (A) Take a linear map f : and define the spectral radius

Let A~f = Aof 8 h ~ 1 f 0 ... 8 A f be the full exterior pcwer of f . Then by

an easy argument, the entropy (for the standard cubical partition of satis-

fies,

for every non-empty open bounded subset Y in .

(B) Let f be an endomorphism of the torus Tn = R/Zn . It is easy to see

that

for the covering linear nf- + nf- and for every ncn-enpty bounded open

subset Y c B~ . It follavs with (A) that

for the induced endomorphism f* on the real hcmology H* (Tn) .

(C) Every holomorphic map f : Pn + Pn has

ent f = log Rad f * . (*)

Furthermore, ent f|Y = ent f f or every subset Y c Pn whose canplement is non-

dense and invariant under f. For example, if f on 
1 

is given by a polyno-
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mial f 
1 

of degree d > 0 , then ent f|Y = log d for

, provided |f(z)| ~ r for z > r .

Notice that Rad f* equals the topological degree deg f for every continuous

selfmap f of with deg f > 0 .

The proof of (*) consists of shaving that

where log+t = max (O,log t) , which takes care of deg = 0 .

The first inequality is an inmediate corollary of the following theorem by

Misiurewicz and Przyticki (see [M-P] 1) .

1.5. Theoren. Let f be a compact X , such

that the pull back f-1(x) at d point for all x in a subset of

full measure in X. Th en ent f > log d .

The second inequality (C2) follows fran the ( obvious ) bound

for the 2n-dimensional volumes of the graphs r. 
c x of the iterates

of f . (See 2. 4 . ) 
~

1.6. Elementary properties of the entropy.

The following list of facts (whose proofs are straightforward) gives some

idea cn the dynamical significance of the entropy.

(i) For any two subsets in X ,

(ii) If Y1 c Y2 then ent flY2 . °
(iii) Take two continuous selfmappings of compact spaces, say fi : ~ Xi -~ Xi for

i = 1, 2 and let F : X1 ~ X2 be a ccntlnuous map commuting with f i . If F is

mto, then ent f. >_ ent f~ . If F is finite-to-me then, ent f. ~ ent f~ .
(iv) Suppose a continuous map f : X -~ X fixes a closed subset Xo c X and

wanders m the complement st = That is each point x E 03A9 admits a neighbor-

hood U such that fl (U) does not meet U for all sufficiently large i. Then

ent f = 0 , provided X is canpact.

Examples. (a) Let f be a linear selfmapping of R2 with two real eigenvalues
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~ ±1 . . Such an f wonders outside the origin but ent f ~Y may be positive on

bounded subsets Y in IR2 (see 1.4.A.). Next we extend f to a projective self-

mapping f of the projective plane P2 ~ JR2 . This f fixes, besides the origin

in JR2, two points m the projective line P1 - p2, 1R2 correspmding to the two

eigenspaces (if the eigenvalues are equal f fixes P1) and again f wanders

outside the fixed point set. Since P2 is compact, ent f = 0 by (iv) (compare

(C.2) above. (Notice that ent f ~ Y ~ ent for Y c JR2c P2 as the entropy in

defined with the standard cubical partitim of R2 does depend on the par-

tition and is not topologically invariant).

(b) Consider the map f : IR2 + JR2 given in the polar coordinates by

f : ( p , 6 ) ~ (2p,d8) for some À > 1 and an integer d . This f obviously

extends to a continuous selfmap f of the cue-point ccnpactification of 3R ,
that is S2 ~ JR2 . The map f wanders outside the two (obvious) fixed points.

Thus ent I = 0 and I violates the inequality ent > log ~ deg ~ for 2

(here deg I = d) as well as Theorem 1.5. This is due to the non-smoothness of

f at the origin 0 E 

2. ENTROPY AND THE VDLUME GRCWTH

2.1. Let X be a smooth Riemannian manifold (e.g. a submanifold in JRn) and

f : X -~ X a C 1-smooth maps. Take an i-dimensional submanifold Y c X and define

where c Y x x stands for the graph of the i-th iterate of f m Y

and Vol denotes the l-dimensional Riemannian volume.

Notice that logvol can be bounded by the norm of the differential

Df : T (X) -~ T (X) ,

Observe that Rad Df  ~Df )~ ( and that Rad Df (unlike ~Df ~ ) ) does not depend

en a choice of the Riemannian metric on X , provided X is compact.

2.2. YOMDIN THEOREM. Let f be a Cr-smooth self-map of a compact X

and let Y c X be a compact Then
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2.3. COROLLAIRE. (Solution 06 Shub entropy conjecture for C~-maps). If f is

for the spectral radius Rad f* of the induced endomorphism on the 

f~ : t H~ (X) ~ H~ (X) .

PROOF. Consider pairs of closed forms w. and w~ en X x x with

deg w. + deg w~ = and observe that 
, , .

Remark. The spectral radius of f* on Hl is obviously bamded by the volume

grcwth of the Q-simplices of fixed triangulaticn of V under the iterates of f .

2.3.A. If f wanders outside the fixed point set of f (see 1.6. (iv) )

then every eigenvalue X of f* on H* (x) satisfies ~[ ~ 1 .

2.4. An upper bound for the entropy

Several months prior to Yomdin’s result, Sheldcn Newhouse [N ] found the follow-

ing converse to (**) for C2-selfmaps of compact manifolds,

over all compact C~-submanifolds Y c X . A similar inequality for diffeanorphisms
was proven earlier by Felix Przyticki [P] .

2.5. Semicontinuity of the entropy

Using (****) and his main lemna (see 3.4) Yomdin shows that

for every C~-continuous in T E [0,1] ] family of C~-maps f : X -)- X of a

carpact manifold X .

Example of non-continuous entropy

Map the unit disk in (E into itself by f : z ~ ( 1- T) z 2 for T E [0,1] .

Then ent fo = log 2 (see 1.4.C.) and ent fT = 0 for T > 0 as fT wanders

outside the center of the disk for T > 0 .
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2.6. Yomdin’s inequality (*) is sharp. To see this, let Y c 1R2 be the graph of
the function Y = sin x~ 1 for x E [0,1] ] which is Cr-smooth for all r and
e > 0 . Take the projective map f on P~ =) 1R2 given by the linear map
(x,y) -~ 12x, 2y) of R2 . Then the length of is about

i i

2 r+£ - (Rad Df) r+~ , while ent f = 0 . This makes (*) sharp for E + 0 . If one

insists on a Coo- smooth Y and a Cr-smooth f then one just appropriately
changes the smooth structure on P~ .

2.7. Several historical remarks

The relation between entropy and topology was discovered by Dinaburg [D] who

observed that the ti.ne one map f 1 of the geodedic f low of a compact Riemannian
manifold V has ent f 1 > 0 if the fundamental 

1 (V) has exponential
growth. This is seen by looking at the universal covering of V and applying the
following simple fact (compare 1.4.B) to the associated covering of the tangent
bundle of V ,

(A) Let  ~ X be a covering of a finite (cubical) complex X and

map f : X + X to a continuous map f : X ~ X . compact
Y c X projects onto X , th en

whene one computes ent f for the Induced cubical structure on  .

Notice that Yomdin’s inequality (**) also yields ent f 1 > 0 for 

V (Dinaburg’s proof only needs the continuity of the geodesic flew). In fact, the
inequality ent f 

1 
> 0 follows fran (**) for all C~-smooth V , where every two

generic point, are joined by at least C’ geodesic segments of length  a for

all a > 1 and seme C > 1 . This lcwer bound en the number of geodesic segments
is satisfied for example, by those simply connected manifolds V for which the

Betti numbers bi of the loop space of V grew exponentially in i = 1,2,...

(see [G]) .

(B) Manning [Ma] proved that the spectral radius of f~ : H1 (X) -~ H1 (X)
provides the (lcwer) bound

for every continuous map f of a compact polyhedron X (to see this apply (A) to

the maximal Abelian cover X -~ X) and Misiurewicz and Przyticki ] sharpened
this inequality for X hanotopy equivalent to the n-torus,
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(C) Shub conjectured that ent f > log Rad f* is satisfied by C -maps on all
manifolds (see (b) in 1.6. for a Co-counterexample). Now, this conjecture is

settled (besides tori) for C 1-maps of the spheres Sn (by 1.5. ) and for C~-maps

on all X by Yomdin’s (***) . .

3. REDUCTION OF YOMMN THEOREM TO AN ALGEBRAIC LEMMA

3.1. Cr-size of a submanifold

Fix an integer R, = 1, 2, .. and define the of a subset Y c Rn as

the lower bound of the numbers s > 0 for which there exists a Cr-map of the
unit £-cube into say h : [ 0,1 ] ~’ -~ ~n, whose image contains Y and such

that s . Here D h is the vector assembled of (the c ents of) the

partial derivatives of h of orders 1,2,...,r and the norm refers to the

supremum over x E [0,1]Q , ,

Remark. We could use instead of [0,1] l another standard l-dimensional manifold

(e.g. the unit ball in or the sphere which would give us an essentially

equivalent noticn of Cr-size.

3.2. It is obvious that the Cr-size is monotone increasing in r and in Y c ]R~

and that the C 1-size bounds the diameter and the l-dimensional volume (i.e. the

Hausdorff measure) of Y by

In fact, if l and r equal cne and Y is a smooth ark in then the Cr-
size of Y equals the length of Y . The C2-size of such a Y measures, in a

way, the total curvature of Y but the precise geanetric meaning of the Cr-size
for 2 is rather obscure.

If a subset Y c Rn has 1 and f : Rn ~ IRm is a then

by the chain rule the image Y’ of f has

for some universal cmstant depending m r, ,m and n . In fact, (1) remains

valid if f is defined on a neighbourhood U ~ Y in which contains the

image of the inplied map h : [0,1 ] ~ -~ ~ . If 1 /2 , then the
e-neigbourhood UE of Y will do.

Every Y c 89 of S can be subdivided into j subsets of

S/j for all j = 1,2.... This is done by dividing [0,1]Q into
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jl-cubes [0,j-1]l and using the obvious scaling map [0,1]l~ [O,j 1]Q for each
cube of this subdivision.

3.3. ALGEBRAIC LEMMA. Let Y c (0,1 ]n c IRn be the zero set of (a system of some)

polynomials p1, ... ,pk on [0,1 ]n , such that dim Y = Q . For each r k = 1, 2, ...

there exists an integer N which only depends on n, r and deg E deg p . ,
and h : [0,1 1 Q + Y for v = 1, ...,No , whose images cover all of Y and

‘  1 f or v = 1, ... ,No . Furthermore,

(i) each h03BD is algebraic of degree ~ d’ for same d’ depending only on

r , deg Y and n (i. e. the graph of h In [0,1]l x IRn is given by some poly-

nomials of total degree ~ d’ ) ;

(it) each h03BD is a real analytic diffeomorphism of the interior of [0, ] *
onto its image and these images only meet at the boundaries of the cubes. That is,

if h (x) = h , (Y) , then x and y In the boundary of [0,1 ] 
Q 

for all v

and v’ - 1, ... ,No .
The proof is given in 4. To get some insight the reader may look at the hyper-

bola xy = E in the square {0  x  1 , 0  y  1} c IR2 for small positive £,

say E = 0.0001 and find hv for r = 2 and N = 6 .

3 . 4. MAIN LEMMA. Let Y be an arbitrary subset In the graph

r c IRl+m ~ [0,1 ] 
Q 

x IRm of a Cr-map g : [0,1 ] l ~ IRm and take some positive

number ~ -  1 . Then. Y can b e subdivided into N --  C E Q I 
subsets of Cr-size  C~Diam Y , where ~rg denotes the vector assembled of

the partial derivatives of g of order rand where C = C (£,m,r) is a unluen-

sal constant.

PROOF. With a change g (x) -w ag (ax) +b we can make Y c [0,1 ] ~’ x [ 1 i3, 2i3] m
and we also can assume Diam Y = 1 . Then, using subdivisions of subsets of

Cr-size  1 to j l pieces of Cr-size ~ j-1 , we reduce further to the case,where ~ = 1.

Now, f ix a 0 , (m+Q+r) " and let k be the first integer

- > 03B4-1~[ 3 r g ( I 1 /r . Then cover [ 0,1 ] Q by kl image s of af f ine maps

x : [0,1 ]l + [0,1 ]l of the form a (x) = k -1 x + a for v 
= 1, ... ,k . The

v sed maps x o g : [ o , Q + w v ~r ( x g)  kr [ a g . Using this
we reduce the lemma to the case where , ~~rg~  03B4r . (Notice that exactly at

this stage we gain a lot for large r) .

No, we invoke the Taylor polynanial of g of degree r-1 at some point

xo E [0,1 ] . That is a polynomial map p : of degree (of each component

of p) r-1 which satisfies, for sr and small s , by Taylor remainder

theorem,
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Then we apply Algebraic Lemma to the part Yo of te graph of p lying in the

unit cube [o,1]Q+m and get N 0 maps h~ : [0,1]~’-~[o,1]Q X [o,1]m with

1 which cover Y .Denote by h03BD and 03BD the 

[0,1]m-components of h03BD correspondingly and observe that 03BD = p o h for

Imh03BD c rp . .Then we replace by .Since

~p-g~ ~ 1/3 , the images of h’ contain our Y . Finally, we estimate by

which is the required bound on the Cr-size of the images of h’03BD ,v - 1,...,No ,
covering Y . Q.E.D.

3.5. MAIN COROLLARY. Take an open subset U c IRm, let f : U ~ IRm be a 

and Yo c U be a subset of Cr-size  1 and such that Yo is far from the

boundary a U of U . aU) > l . Then the intersection Y1 of
the image f (Yo) c IRm with every cube o c IRm of unit size (i. e. with diameter

UE) can be subdivided into N  c’) ) Drf~ l/r+1 subsets o[ Cr-size  I [on iome

constant C’ = C’ (l,m,r) .

PROOF. Let h : [0,1]Q ~ IRm be the map with ~Drh~  1 covering Yo . By the
chain rule, the composed map g = f o h has ~ Drg ~  C" ( Q,m, r)~Drf ~ and the

Main Lemma applies to Y = r g fl([0,1]Q x o ) > c [0,1]Q X Since Y maps onto

Y1 under the projection [0,1]Q X ~ ~ ~ , the covering of Y by subsets of

Cr-size  1 (unsured by the lemma) induces the required covering of Y1 . Q.E.D.

Remark. An important special case is that of a linear map f which, in fact, is

sufficient for the proof of Yomdin theorem.

3.6. Suppose, the map f sends U into itself and such that dist(f(U),aU) > di .

Then 3.5. also applies to the pieces of Y1 of Cr-size  1 which are prcvided

by 3 . 5. Then by induction on i = 1, 2, ... we come to the following conclusion.

Let []1,...,[]i be arbitrary unit cubes in U , []’i denote the pullback
of o. i under the i-th iterate fl of f and Y, be the fl image of the inter-

section Yo n o’1 n a2 ~...~ ai . Then Yi can be subdivided into

Ni  (C’ ~ Drf 1 subsets of Cr-size  1 . In particular
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3.7. A bound for Vol fj(Yo) . Let n be the restriction of the standard cubical

partition 03A0st of IR to the above U . Then one has with (*) and the notaticns

in 1.1.,

for sane c = c ( ~,~ m, r) . 

3.8. The proof of Yqmdin theorem

First observe that it suffices to consider the case of maps f : U -~ U

satisfying the assumption in 3.6. because every manifolds X embeds into some

B~ and every map X -~ X extends to the normal neighbourhood U c ~ of X

with the normal projection U -~ X . Furthermore, by scaling U to a larger set

aoU for some ao > 1 one can make dist(X,3U) as large as one wishes.

Next consider (rescaled) maps f. : jU -~ jU for j = 1, 2, ... , defined by

fj (x) -  > and notice that

(ii) the partition n of jU into unit cubes corresponds to the partition

n(j) of U into j-1-cubes.
(iii) the set jYo can be subdivided into j subsets of Cr-size  1 .

New, by the definition of ent I for every e > 0 there exist an integer

k , I such that

for all j and all sufficiently large (depending and k) i . This is equi-
valent to

which is possible by (i). Then we apply (**) to r and the j pieces of jY 
o

of Cr-size  1 (see (iii) ) and conclude that

j k ent f~ + A/r log ~Df~~ ( + ke(1+ ~) + c ,

for all sufficiently large i . We make i -~ oo and observe that

lim sup i"~ log Vol f~-(Y) = k lim sup i’~ log Volf (Y)

for all contact submanifolds Y c: X . Therefore
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lim supi-1logVolfi (Y )  ent f|Yo + Q log ~( + E ( 1 + + c/k .

Then we let k and e -~ 0 and obtain,

lim sup i 1 log Vol fi(Yo) ~ ent f Y + l/r log+ Rad Df ,
for all subsets Y c X with 1 . Since every compact l-dimensional

submanifold Y can be covered by finitely many pieces with Cr-size  1 this ine-

quality holds true for all Y .

New, to prove Yomdin inequality (*) in 2 . 2 . with the volume of the graphs

instead of the images fi (Y) (we used graphs rahter than images mainly to

avoid the nultiplicity problem for non-injective maps) we observe that
= for F : (y,x) + (Y,f (x) 1 and that ent f ~Y = ent fl 

Hence, the above inequality for F in place of f yields Yomdin’s (*) for f .

Q.E.D.

3.9. Cr-entropy and semiccntinuity

Let [0,1)Q ~ ~ be Then a collection of maps

hl,...,hN : [0,1]~’ ~ [0,1]~’ whose images cover [0,1]Q is called an if

 E and (g. o h ) ~ (  ~ for all j = 0, ... , i and v = 1, ... ,N . Let

log N for the minimal N for which an (-cover exists. Observe

that

for k e  s  E and all k = 1,2,....

Next, if {hv} is an e-cover for g...g. and {h uv } is an E-cover for

the composed maps h 
v 

for j = 1,...,i , v = 1,...,N , then o h pV } also

is an e-cover for provided e  e ~ where eo 
= > 0 is a

universal constant.

New let f : X ~ X be a Cr-map of a smooth compact submanifold X c: IRm and

let g : [o,1 ] Q -~ X be Cr-smooth. Then the limit

does not depend on e > 0 by the earlier discussim and is called 

entr (f g) . . Obviously,



over all g with 1 . If e  eo for the above Eo then

obviously

Remark. There is the following topological version of ent . Take all Y c X

with 1 , set

NaY by applying the argument in sections 3.4-3.8 to the Cr-entropy directly
(without passing to volumes) one sees that
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4. THE PROOF OF ALGEBRAIC LEMMA

4.1. First we prove the lemma for algebraic curves Y in the (x,y)-plane such

that the projection of Y to the x-axes is finite-to-cne. Such a Y can be

obviously divided into N  d4 segments whose projecticns to the x-axes are cne-

to-one. Thus we reduce to the case where Y is the graph of a single valued func-

tion y = y(x) for x E [0,1] , , such that ~ ~ y (x) ~ = sup Iy (x) I  1 .

x 

Next, we subdivide [0,1] ] into smaller segments by the points where the

derivative y’ of y equals ±1 . We switch the roles of x and y at those

segments where ~y’ ~ I > 1 and reduce the lemma to the case of functions y = y(x) ,
such that ~  1 . This proves the Lemma for r=1 since the map x ~- (x,y(x))
sends [0,1] ] into Y B/2 and an obvious subdivisim into two

1/2-subintervals makes ~Dj~ ~ 1 .
NCM, for r > 2 , we assume,

, ~~y~~ I  1,..., 1

and divide [0,1] ] by the zero points of the derivative Y(r+1)(x) . Then y (x)
is monotone on every subinterval (where does not change sign) and the

problem obviously reduces to the case where y (x) is positive and monotone

decreasing on [0,1] . . This monotonicity and the bound y (r-1) II  1 imply that

y 
(r) (x)  2x 1 for all x E [0,1 ] . Then a straightforward computation shows that

the function z (x) = y (x2) has

 10r for i = 1,...,r ,

and the map x -~ (x,z(x)) with an additional subdivision into 10r segments

provides the proof of Algebraic lemma for plane curves Y .

4.2. Now, let Y be a curve in c = 3R , We may assume that the

projection of Y to ]R is finite to one. Then Y is the graph of (n-1) alge-
braic functions y1 (x) , y2 (x) ... yn-1 (x) . We assume, by induction, that the
functions Y1’...’Yn-2 have bounded derivatives of orders  r and use the above

change of variable, x~~x(t) to make the derivatives of Yn-1 also bounded. Then

all functions zi (t) = Y i (x (t)) , i = 1,...,n-1 i have bounded derivatives (on sane

subintervals) which obviously yields Algebraic Lemma for Y .
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4.3. Consider a smooth vector valued algebraic function in 2 variables, say

y = Y (x1’.....x2) , such that the cents of the partial derivatives of orders
 r in the first 2-1 variables are bounded in absolute values by o~e and let

us make a change in the variable x in order to achieve a similar bound for all
partial derivatives. We assume by inducticn en r that the partial derivatives of

orders  s  r in x2 are bounded. We denote by y~ = Q) the vector

valued function whose components are the partial derivatives of the orders -  i.
in x., where 

n

Let y,... be the components of  and assume by induction en the number of

components that _

Then, for every fixed value of xQ E [0,1 ] we ccnsider the maximum set

S (x ) c x X [0,1 ] Q 1 - [0,1 ] Q 1 of the function
N

a yM
in the variables xl,...,xQ_1 . Then there obviously exists a subdivision

of Q[0,1] ] into subintervals, say Ik , and single valued algebraic functions

sk : I k -~ [0,1]Q 1 , such that

(a) the number of the subintervals and deg sk are bounded in terms of

deg YM ~

Define s~ : I -~ [0,1]~ ~[-1,1] ] by sk : (xQ) ) and apply

the construction of the previous section to each function This makes

the derivatives 20142014-20142014 bounded for i = 1,...,r and all k which easily

implies a bound on 

4.4. Now we prove Algebraic lemma by inducticn on i = dim Y for an algebraic set

Y c [o,1]n . We view this Y as the graph of an algebraic map y : [o,1]Q-~[o,1]n ~
and we assume, for every fixed x E [0,1] , , that there exists some change 

of varia-

bles xl,...,xQ-1 providing a universal bound for the partial derivatives of

every branch of y in the changed variables xl,...,xQ-1 . We asssume, moreover,

this change of variables be the piece-wise algebraic in x and thus come to the

situation of the previous section. Since the constructions we use in 4.1. are piece-

wise algebraic for families of functions algebraicly depending on parameters, this


