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COUNTING POINTS ON CURVES OVER FINITE FIELDS

[d’après S. A. STEPANOV]

by Enrico BOMBIERI
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I. Let C/k , k = F , be a projective non-singular curve of genus
g , over a finite field k of characteristic p , with q elements. Let

k = F and let v (C) be the number of k -rational points of the curve C .
r r r r

q

It is well-known that

where the w. are algebraic integers independent of r , such that

Of these results, (1) and (2) are easy consequences of the Riemann-Roch theo-

rem on C , while (3) lies deeper. The first general proof of (3) was obtained by

Weil [3], as a consequence of the inequality

Until recently, all existing proofs of (3) followed Weil’s method, either using

the Jacobian variety of C or the Riemann-Roch theorem on C x C . In this talk

I want to explain a new approach to (3) invented by S. A. Stepanov [2]. Stepanov

himself proved (3) in special cases, e. g. if C was a Kummer or on Artin-Schreier

covering of , and a proof in the general case has been also obtained by

W. Schmidt. The case in which g = 2 has been investigated carefully by



Stark [1J, who showed that in certain cases (e. g. q = 13 ) one can get bounds

for v r (C) slightly better than those obtainable by (4).

Stepanov’s idea is quite simple. One looks for a rational function f on

C , not identically 0 , such that

(i) f vanishes at every k-rational point of C , of order ~ m , except possi-

bly at a fixed set of mo rational points of C .

It is now clear that

(C) - zeros of poles of f

therefore

mo -~ m ~ ( ~ poles of f ) . .

If we are able to construct f with not too many poles, then we may get an useful

bound for v1(C) , essentially of the same strength as (4).

The construction of f given by Stepanov, and also by Schmidt in the general

case, is complicated, and in order to prove that f vanishes of order ~ m they

consider derivatives or hyperderivatives of f , of order up to m - 1 . In the

i

final choice, m is about q~ . The argument I will give here, though based on

the same idea, does not use derivations and is extremely simple.

II. As Serre pointed out to me, it is more convenient to give C

over the algebraic closure k of k , to give a Frobenius morphism

c~ : C -~ C

of order q , and ask for

v r = IJ fixed points of cpr .
We begin with



THEOREM 1.- Assume q = p , where a is even. Then if q > (g + 1)4 we have

For the proof, we may assume that cp has a fixed point x , otherwise there

is nothing to prove. Now define

R = vector space of rational functions on such that .

The following facts are either obvious or trivial consequences of the Riemann-

Roch theorem on C .

(i) dim R ~ m + 1
m

(ii) dim R ~ m + 1 - g ,

with equality if m > 2g - 2

(iii) dim dim Rm + 1 .

Next, we note that since cp(x ) = x , we have
(iv) R m 0 C - R mq ,

(v) every element f of R 
m 

o cp is a q-th power, and we have

If A , B are vector subspaces of R R we denote by AB the vector subspace

of Rm+n generated by elements fh , f E A , h E B ; also we denote by R(pu)l
the subspace of R consisting of functions f , f E Rl . Note that

) 
dim R~ F ~ - dim R 1 ,

dim R 0 cp = dim R .

m 
’ 

m

The following simple result is the key lemma in the proof.

Lemma.- If lpu  q , the natural homomorphism



is an isomorphism.

COROLLARY . - If 4pF  q then

Proof of Corollary. Obvious from (vi).

Proof of Lemma. Let ord f denote the order of a function f at xo , so

that

By (iii), there is a basis s. , 1 s~ - ,..., s r of R 
m 

such that

Now in order to prove the Lemma we have to show that R~ and if

then the or are also identically 0 . But assume
1

because ord( ~~ ) - and ord( s . ~ c~) - q while
i 1 1 1

ord(s.) is strictly increasing with i , by our choice of the basis of R .
1 m

Hence



and u vanishes at x . But y 6 R. , hence r has no poles outside x .

p o p ~ p o

Hence 03C3 has no poles and at least one zero, hence u z 0 , a contradiction.
P P

Q.E.D.

Proof of Theorem 1 . Assume ~p  q . By the lemma, the map

is well-defined and gives a homomorphism

By the Corollary of the lemma and by the Riemann-Roch theorem we have

if .~ , m z g .

Every element f E ker(03B4) vanishes of order ~ p  at every fixed point of

c~ , , except possibly at x . In fact, if
o

hence f vanishes at every fixed point of cp , except at g , But since every
/ 0

element in ( R 
m 

o c~ ) is a p~’-th power, f is a p~’-th power.

We conclude that f has at least



and we get the conclusion of Theorem 1.

Q.E.D.

III. The argument given before does not give a lower bound for 03BD1 ,
while this is needed if we want to deduce the Riemann hypothesis (3). For example,

if q - W1 - W2 + 1

and w1 = q, w2 = 1 then (2) is verified, vr is always 0 but (3) is false.

For the Riemann hypothesis, we note that we may assume that q is an even

power of p, by making a base field extension for C . Also, by a well-known

approximation argument, it is sufficient to prove

To prove this, we argue as follows.

The function field k(C) of the curve C~ contains a purely transcendental

subfield k(t) such that k(C) is a separable extension of k(t) . Hence there

is a normal extension of k(t) which is also normal over k(C) ; geometrically,

we have a situation



where C’ -~ P 1 is Galois, with Galois group G , and C’ -* C is also a

Galois covering, corresponding to a subgroup H of G . We may assume that G

acts on C’ over k , by making a finite base field extension. If x is a point

of P rational over k and unramified in C’ -~ tP~ , and if y is a point of

C’ lying over x , we have

for some ~ E G , called the Frobenius substitution of G at the point y .

Let ,’~~ be the number of such points of C’ with Frobenius substitution

1~ . Arguing as before, but using

instead of 6 , we obtain easily

where g’ = genus of C’ . On the other hand

(the 0(1) takes care of the branch points of C’ -~ P ). Since

comparison of (8) and (9) gives

for every ’~ E G . We have also

whence by (10) we get
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