SÉminaire N. Bourbaki

Enrico Bombieri

Counting points on curves over finite fields

Séminaire N. Bourbaki, 1974, exp. nº430, p. 234-241
http://www.numdam.org/item?id=SB_1972-1973__15__234_0
© Association des collaborateurs de Nicolas Bourbaki, 1974, tous droits réservés.

L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

by Enrico BOMBIERI

I. Let $C / k, k=\mathbb{F}_{q}$, be a projective non-singular curve of genus g, over a finite field k of characteristic p, with q elements. Let $k_{r}=\mathbb{F}{ }_{q}$ and let $\nu_{r}(C)$ be the number of k_{r}-rational points of the curve C. It is well-known that

$$
\begin{equation*}
v_{r}(c)=q^{r}-\sum_{1}^{2 g} w_{i}^{r}+1 \tag{1}
\end{equation*}
$$

where the ω_{i} are algebraic integers independent of r, such that
(2)
(3)

$$
\begin{array}{ll}
w_{i} w_{2 g-i}=q & \text { (functional equation) } \\
\left|w_{i}\right|=q^{\frac{1}{2}} & \text { (Riemann hypothesis). }
\end{array}
$$

Of these results, (1) and (2) are easy consequences of the Riemann-Roch theorem on C , while (3) lies deeper. The first general proof of (3) was obtained by Weil [3], as a consequence of the inequality

$$
\begin{equation*}
\left|v_{r}(c)-\left(q^{r}+1\right)\right| \leq 2 g q^{r / 2} \tag{4}
\end{equation*}
$$

Until recently, all existing proofs of (3) followed Weil's method, either using the Jacobian variety of C or the Riemann-Roch theorem on $C \times C$. In this talk I want to explain a new approach to (3) invented by S. A. Stepanov [2]. Stepanov himself proved (3) in special cases, e.g. if C was a Kummer or on Artin-Schreier covering of \mathbb{P}^{1}, and a proof in the general case has been also obtained by W. Schmidt. The case in which $g=2$ has been investigated carefully by

Stark [1], who showed that in certain cases (e.g. q = 13) one can get bounds for $\nu_{r}(C)$ slightly better than those obtainable by (4).

Stepanov's idea is quite simple. One looks for a rational function f on C, not identically 0 , such that
(i) f vanishes at every k-rational point of C, of order $\mathbf{z} \mathrm{m}$, except possibly at a fixed set of m_{o} rational points of C.

It is now clear that

$$
m\left(v_{1}(c)-m_{0}\right) \leq \# \text { zeros of } f=\# \text { poles of } f
$$

therefore

$$
v_{1}(c) \leq m_{0}+\frac{1}{m}(\# \text { poles of } f) .
$$

If we are able to construct f with not too many poles, then we may get an useful bound for $v_{1}(C)$, essentially of the same strength as (4).

The construction of f given by Stepanov, and also by Schmidt in the general case, is complicated, and in order to prove that f vanishes of order $\geq m$ they consider derivatives or hyperderivatives of f, of order up to $m-1$. In the final choice, m is about $q^{\frac{1}{2}}$. The argument I will give here, though based on the same idea, does not use derivations and is extremely simple.
II. As Serre pointed out to me, it is more convenient to give C over the algebraic closure \bar{k} of k, to give a Frobenius morphism $\varphi: C \rightarrow C$
of order q , and ask for

$$
v_{r}=\# \text { fixed points of } \varphi^{r} .
$$

We begin with

THEOREM 1.- Assume $q=p^{\alpha}$, where α is even. Then if $q>(g+1)^{4}$ we have

$$
\begin{equation*}
v_{1}<q+(2 g+1) q^{\frac{1}{2}}+1 \tag{5}
\end{equation*}
$$

For the proof, we may assume that φ has a fixed point x_{0}, otherwise there is nothing to prove. Now define
$R_{m}=$ vector space of rational functions on C / k, such that $(f) \geq-m x{ }_{0}$.
The following facts are either obvious or trivial consequences of the RiemannRoch theorem on C.
(i) $\quad \operatorname{dim} R_{m} \leq m+1$
(ii) $\quad \operatorname{dim} R_{m} \geq m+1-g$,
with equality if $m>2 g-2$
(iii) $\quad \operatorname{dim} R_{m+1} \leq \operatorname{dim} R_{m}+1$.

Next, we note that since $\varphi\left(x_{0}\right)=x_{0}$, we have
(iv) $\quad R_{m} \circ \varphi \subset R_{m q}$,
(v) every element $f \circ \varphi$ of $R_{m} \circ \varphi$ is a $q-t h$ power, and we have

$$
(f \circ \varphi)=q \varphi((f))
$$

If A, B are vector subspaces of R_{m}, R_{n} we denote by $A B$ the vector subspace of R_{m+n} generated by elements $f h, f \in A, h \in B$; also we denote by $R_{l}^{\left(p^{\mu}\right)}$ the subspace of $R_{\ell p^{\mu}}$ consisting of functions $f^{p^{\mu}}, f \in R_{\ell} \cdot$ Note that
(vi)

$$
\begin{aligned}
\operatorname{dim} \mathrm{R}_{\ell}\left(\mathrm{p}^{\mu}\right) & =\operatorname{dim} \mathrm{R}_{\ell} \\
\operatorname{dim} R_{m} \circ \varphi & =\operatorname{dim} R_{m}
\end{aligned}
$$

The following simple result is the key lemma in the proof.
Lemma.- If $\ell p^{\mu}<q$, the natural homomorphism

$$
R_{\ell}^{\left(p^{\mu}\right)} \otimes \otimes_{\bar{k}}\left(R_{m} \circ \varphi\right) \rightarrow R_{\ell}^{\left(p^{\mu}\right)}\left(R_{m} \circ \varphi\right)
$$

is an isomorphism.

COROLLARY.- If $\ell^{\mu}<q$ then

$$
\begin{equation*}
\operatorname{dim} R_{\ell}^{\left(p^{\mu}\right)}\left(R_{m} \circ \varphi\right)=\left(\operatorname{dim} R_{\ell}\right)\left(\operatorname{dim} R_{m}\right) \tag{6}
\end{equation*}
$$

Proof of Corollary. Obvious from (vi).

Proof of Lemma. Let ord f denote the order of a function f at x_{o}, so that

$$
\text { ord } f \geq-m \quad \text { for } f \in R_{m}
$$

By (iii), there is a basis $s_{1}, s_{2}, \ldots, s_{r}$ of R_{m} such that

$$
\text { ord } s_{i}<\text { ord } s_{i+1} \quad \text { for } i=1,2, \ldots, r-1 .
$$

Now in order to prove the Lemma we have to show that if $\sigma_{i} \in R_{\ell}$ and if

$$
\sum_{i=1}^{r} \sigma_{i}^{p^{\mu}}\left(s_{i} \circ \varphi\right) \equiv 0
$$

then the σ_{i} are also identically 0 . But assume

$$
\sum_{i=p}^{r} \sigma_{i}^{\mu} \cdot\left(s_{i} \circ \varphi\right) \equiv 0, \quad \sigma_{\rho} \not \equiv 0
$$

We find

$$
\begin{aligned}
\operatorname{ord}\left(\sigma_{\rho}^{p^{\mu}}\left(s_{\rho} \circ \varphi\right)\right) & =\operatorname{ord}\left(-\sum_{\rho+1}^{r} \sigma_{i}^{p^{\mu}}\left(s_{i} \circ \varphi\right)\right) \\
& \geq \min _{i>\rho} \operatorname{ord}\left(\sigma_{i}^{p^{\mu}}\left(s_{i} \circ \varphi\right)\right) \\
& \geq-\ell p^{\mu}+q \text { ord } s_{\rho+1}
\end{aligned}
$$

because $\operatorname{ord}\left(\sigma_{i}^{p^{\mu}}\right)=p^{\mu} \operatorname{ord}\left(\sigma_{i}\right) \geq-\ell p^{\mu} \quad$ and $\quad \operatorname{ord}\left(s_{i} \circ \varphi\right)=q \operatorname{ord}\left(s_{i}\right)$, while ord $\left(s_{i}\right)$ is strictly increasing with i, by our choice of the basis of R_{m}. Hence

$$
\begin{aligned}
p^{\mu} \text { ord } \sigma_{\rho} & \geq-\ell p^{\mu}+q\left(\text { ord } s_{\rho+1}-\text { ord } s_{\rho}\right) \\
& z-\ell p^{\mu}+q>0
\end{aligned}
$$

and σ_{p} vanishes at x_{0}. But $\sigma_{\rho} \in R_{\ell}$, hence σ_{ρ} has no poles outside x_{0}. Hence σ_{ρ} has no poles and at least one zero, hence $\sigma_{\rho} \equiv 0$, a contradiction.

Q.E.D.

Proof of Theorem 1. Assume $\ell p^{\mu}<q$. By the lemma, the map

$$
\Sigma \sigma_{i}^{p^{\mu}}\left(s_{i} \circ \varphi\right) \mapsto \Sigma \sigma_{i}^{p^{\mu}} s_{i}
$$

is well-defined and gives a homomorphism

$$
\delta: R_{\ell}^{\left(\mathrm{p}^{\mu}\right)}\left(\mathrm{R}_{\mathrm{m}} \circ \varphi\right) \rightarrow \mathrm{R}_{\ell}^{\left(\mathrm{p}^{\mu}\right)_{R_{m}} \subseteq \mathrm{R}_{\ell \mathrm{p}^{\mu}+\mathrm{m}}}
$$

By the Corollary of the lemma and by the Riemann-Roch theorem we have

$$
\begin{aligned}
& \operatorname{dim} \operatorname{ker}(\delta) \geq\left(\operatorname{dim} R_{\ell}\right)\left(\operatorname{dim} R_{m}\right)-\operatorname{dim} R \\
& \ell \mathrm{p}^{\mu}+\mathrm{m} \\
& \geq(\ell+1-g)(\mathrm{m}+1-\mathrm{g})-\left(\ell \mathrm{p}^{\mu}+\mathrm{m}+1-\mathrm{g}\right)
\end{aligned}
$$

if $\ell, \mathrm{m} \geq \mathrm{g}$.
Every element $f \in \operatorname{ker}(\delta)$ vanishes of order $\geq p^{\mu}$ at every fixed point of φ, except possibly at x_{0}. In fact, if

$$
\mathbf{f}=\Sigma \sigma_{i}^{p^{\mu}}\left(s_{i} \circ \varphi\right) \not \equiv 0
$$

we have

$$
\begin{aligned}
f(x) & =\Sigma \sigma_{i}^{p^{\mu}}(x) s_{i}(\varphi(x)) \\
& =\Sigma \sigma_{i}^{p^{\mu}}(x) s_{i}(x) \\
& =(\delta f)(x)=0
\end{aligned}
$$

hence f vanishes at every fixed point of φ, except at x_{o}, But since every element in $R_{l}^{\left(p^{\mu}\right)}\left(R_{m} \circ \varphi\right)$ is a $p^{\mu-t h}$ power, f is a p^{μ}-th power.

We conclude that f has at least

$$
\mathrm{p}^{\mu}\left(\nu_{1}-1\right) \text { zeros. }
$$

But $f \in R_{\ell}^{\left(p^{\mu}\right)}\left(R_{m} \circ \varphi\right) \subseteq R_{\ell p^{\mu}+m q}$, hence f has at most

$$
\ell \mathrm{p}^{\mu}+\mathrm{mq} \text { poles. }
$$

We conclude that if

$$
\ell \mathrm{p}^{\mu}<\mathrm{q} \quad, \quad \ell, \mathrm{~m} \geq \mathrm{g} \quad, \quad \operatorname{dim} \operatorname{ker}(\delta)>0,
$$

i.e. if

$$
(\ell+1-g)(m+1-g)>\ell p^{\mu}+m+1-g
$$

then

$$
\begin{equation*}
v_{1} \leq \ell+m q / p^{\mu}+1 \tag{7}
\end{equation*}
$$

If $q=p^{\alpha}, \alpha$ even,$q>(g+1)^{4}$ we may choose

$$
\mu=\alpha / 2 \quad, \quad \mathrm{~m}=\mathrm{p}^{\mu}+2 \mathrm{~g} \quad, \quad \ell=\left[\frac{\mathrm{g}}{\mathrm{~g}+1} \mathrm{p}^{\mu}\right]+\mathrm{g}+1
$$

and we get the conclusion of Theorem 1 .
Q.E.D.
III. The argument given before does not give a lower bound for ν_{1}, while this is needed if we want to deduce the Riemann hypothesis (3). For example, if $\quad \nu_{r}=q^{r}-\omega_{1}^{r}-\omega_{2}^{r}+1$ and $\omega_{1}=q, \omega_{2}=1$ then (2) is verified, v_{r} is always 0 but (3) is false.

For the Riemann hypothesis, we note that we may assume that q is an even power of p , by making a base field extension for C. Also, by a well-known approximation argument, it is sufficient to prove

$$
v_{1}=q+O\left(q^{\frac{1}{2}}\right)
$$

To prove this, we argue as follows.

The function field $\bar{k}(C)$ of the curve C / \bar{k} contains a purely transcendental subfield $\bar{k}(t)$ such that $\bar{k}(C)$ is a separable extension of $\bar{k}(t)$. Hence there is a normal extension of $\bar{k}(t)$ which is also normal over $\bar{k}(C)$; geometrically, we have a situation

$$
C^{\prime} \rightarrow C \rightarrow \mathbb{P}^{1}
$$

where $C^{\prime} \rightarrow \mathbb{P}^{1}$ is Galois, with Galois group G, and $C^{\prime} \rightarrow C$ is also a Galois covering, corresponding to a subgroup H of G. We may assume that G acts on C^{\prime} over k, by making a finite base field extension. If x is a point of \mathbb{P}^{1} rational over k and unramified in $C^{\prime} \rightarrow \mathbb{P}^{1}$, and if y is a point of C' lying over x, we have

$$
\varphi(\mathrm{y})=\eta \cdot \mathrm{y}
$$

for some $\eta \in G$, called the Frobenius substitution of G at the point y. Let $\nu_{1}\left(C^{\prime}, \eta\right)$ be the number of such points of C^{\prime} with Frobenius substitution η. Arguing as before, but using

$$
\delta_{\eta}: \mathrm{R}_{\ell}^{\left(\mathrm{p}^{\mu}\right)}\left(\mathrm{R}_{\mathrm{m}} \circ \varphi\right) \rightarrow \mathrm{R}_{\ell}^{\left(\mathrm{p}^{\mu}\right)}\left(\mathrm{R}_{\mathrm{m}} \circ \eta\right)
$$

instead of δ, we obtain easily

$$
\begin{equation*}
v_{1}\left(c^{\prime}, \eta\right) \leq q+\left(2 g^{\prime}+1\right) q^{\frac{1}{2}}+1, \tag{8}
\end{equation*}
$$

where $\mathrm{g}^{\prime}=$ genus of C^{\prime}. On the other hand

$$
\begin{equation*}
\sum_{\eta \in G} v_{1}\left(c^{\prime}, \eta\right)=|G| v_{1}\left(\mathbb{P}^{1}\right)+0(1) \tag{9}
\end{equation*}
$$

(the $O(1)$ takes care of the branch points of $C^{\prime} \rightarrow \mathbb{P}^{1}$). Since

$$
v_{1}\left(\mathbb{P}^{1}\right)=q+1
$$

comparison of (8) and (9) gives

$$
\begin{equation*}
v_{1}\left(c^{\prime}, \eta\right)=q+O\left(q^{\frac{1}{2}}\right) \tag{10}
\end{equation*}
$$

for every $\eta \in G$. We have also

$$
\sum_{\eta \in H} v_{1}\left(c^{\prime}, \eta\right)=|H| v_{1}(c)+0(1)
$$

whence by (10) we get

$$
v_{1}(c)=q+o\left(q^{\frac{1}{2}}\right),
$$

Q.E.D.

430-08

REFERENCES
[1] H. STARK - On the Riemann hypothesis in hyperelliptic function fields, to appear.
[2] S. A. STEPANOV - On the number of points of a hyperelliptic curve over a finite prime field, Izv. Akad. Nauk SSSR, Ser. Mat. 33 (1969) 1103-1114.
[3] A. WEIL - Sur les courbes algébriques et les variétés qui s'en déduisent, Hermann (Paris), 1948.

