JOHN G. THOMPSON

Sylow 2-subgroups of simple groups

Séminaire N. Bourbaki, 1968, exp. no 345, p. 543-545

<http://www.numdam.org/item?id=SB_1966-1968__10__543_0>
I will primarily limit this lecture to a discussion of results obtained by two students, Goldschmidt and MacWilliams.

For each group X, let $m(X)$ be the minimal number of generators of X and let $d(X) = \max\{m(A)\}$, where A ranges over all the normal abelian subgroups of X.

Suppose G is simple and T is a Sylow 2-subgroup of G. In studying the minimal simple groups, it became clear that the case $d(T) \leq 2$ was anomalous. I handled the problem by first determining all the possibilities for a Sylow 2-subgroup and then using techniques available in any minimal simple group.

For further work in simple groups, it is desirable to classify all simple G such that $d(T) \leq 2$. The case $d(T) = 1$ is non trivial, but seems well on the way to a solution, so we assume $d(T) = 2$.

The most naive way to tackle this problem is first to classify all 2-groups T with $d(T) = 2$. This is difficult, but one result about 2-groups is helpful.

LEMMA 1. If T is a 2-group with $d(T) \leq 2$, then every subgroup of T is generated by 4 elements.

This result then leads fairly rapidly to
THEOREM 1 (MacWilliams).- Suppose \(T \) is a Sylow 2-subgroup of the simple group \(G \), \(d(T) = 2 \) and \(T \cdot C(T) \subseteq N(T) \). Then \(|T| = 4, 64 \) or 128 and \(T \) is determined by \(|T| \).

If \(|T| = 64 \), \(T \) is isomorphic to a Sylow 2-subgroup of \(U_3(4) \) and if \(|T| = 128 \), \(T \) is isomorphic to a Sylow 2-subgroup of the new simple groups of Janko of orders 604,800 and 502,329,600.

The structure of \(T \) in case \(T \cdot C(T) = N(T) \) is not yet determined. Several of the families of known simple groups satisfy these hypotheses.

Goldschmidt's work had a different origin. Initially, he studied simple groups with a Sylow 2-subgroup whose class of nilpotency is 2. One of the results obtained is that a Sylow 2-subgroup has exponent 4. However, this emerges from a more general set up, the starting point being

LEMMA 2.- Suppose \(p \) is a prime and \(P \) is a Sylow \(p \)-subgroup of a group \(G \). Let \(n \) be the smallest integer such that \(n(p-1) \geq c - 1 \), where \(c \) is the class of nilpotency of \(P \). Let \(W = \langle x^n \mid x \in Z(P) \rangle \), where \(Z(P) \) is the center of \(P \). Then \(W \) is weakly closed in \(P \) (that is, \(g \in G \) and \(Wg \subseteq P \) imply \(W = Wg \)).

This is elementary, but clever. The crucial result is

THEOREM 2 (Goldschmidt).- Suppose \(T \) is a Sylow 2-subgroup of \(G \), \(W \) is a weakly closed subgroup of \(T \), \(1 \subseteq W \subseteq Z(T) \) and \(t \) is an involution of \(T - W \). If \(W \subseteq O_{2',2}(C(T)) \) for every involution \(x \) of \(Wt \), then \(G \) is not simple.
Here $0_{2',2}(X)$ is the largest normal subgroup of X with a normal 2-complement. The proof is character-theoretic.

If one couples this result with work of Gorenstein, we get

THEOREM 3 (Goldschmidt).—If W is weakly closed in T and $W \subseteq Z(T)^2$ where T is a Sylow 2-subgroup of G, then $W \subseteq 0_{2',2}(G)$.

All these results are fragmentary, but given the state of finite group theory, this is not surprising.