N. GHOUSSOUB
On operators fixing copies of c_0 and ℓ_∞

SEMINAIRE
D'ANALYSE FONCTIONNELLE
1980-1981

ON OPERATORS FIXING COPIES OF c_0 AND ℓ_∞

N. GHOUSSOUB
(University of British Columbia, Vancouver)

Exposé No XII
12 Décembre 1980
In this seminar, we report on a part of a joint work with W.B. Johnson and T. Figiel [13] concerning the structure of non-weakly compact operators on Banach lattices. First, we recall the following two fundamental theorems.

Theorem (A) : (A. Pełczynski [4]). A non-weakly compact operator from a $C(K)$-space into any Banach space must preserve a copy of c_0; that is, there exists a subspace of $C(K)$, isomorphic to c_0, on which T acts as an isomorphism.

Theorem (B) : (H. Rosenthal [5]). If K is a σ-Stonian compact space, then every non-weakly compact operator from $C(K)$ into any Banach space must preserve a copy of ℓ_∞.

Our goal is to see to which extent, one can replace $C(K)$ in theorems (A) and (B) by a larger class of Banach spaces.

§ I. NON WEAKLY COMPACT OPERATORS :

The existence of the James space [2] eliminates the possibility of replacing $C(K)$ in theorem (A) by any Banach space not containing a subspace isomorphic to ℓ_1, since c_0 and ℓ_1 do not embed in this space and yet it is not reflexive. However, the result does hold for the identity operator acting on a Banach lattice since if the latter is not reflexive, then it must contain a sublattice isomorphic either to ℓ_1 or c_0 [3]. A natural problem is then to check if the result holds for any operator or equivalently if whether in theorem (A), $C(K)$ can be replaced by any Banach lattice not containing ℓ_1.

Surprisingly, Pełczynski's theorem does not extend even to this case as we show in the following counterexample.

Example (1) : For every p, $1 \leq p < \infty$, there exists a Banach lattice
X\textsubscript{p} and a lattice homomorphism T\textsubscript{p} from X\textsubscript{p} onto c\textsubscript{0} so that

(i) T\textsubscript{p} is strictly singular for each p, 1 \leq p < \infty

(ii) X\textsubscript{p} contains no subspace isomorphic to \ell\textsubscript{1} for p, 1 < p < \infty.

We first give the idea. Let c be the space of converging sequences and set X = \ell\textsubscript{1}(c); that is the space of doubly-indexed sequences
\[a = (a_i, j), \text{ where } i = 1, 2, \ldots; j = 1, 2, \ldots, \omega \text{ such that} \]

\[\lim_{j \to \infty} a_{i, j} = a_{i, \omega} \text{ for } i = 1, 2, \ldots \]

and

\[\|a\|_X = \sum_{i=1}^{\infty} \sup_{j} |a_{i, j}| < \infty \]

Define the norm one operator T : X \to c\textsubscript{0} by

\[Ta = (a_{i, \omega})_{i=1}^{\omega}. \]

Clearly, T is weakly compact and X contains lots of sublattices isomorphic to \ell\textsubscript{1}. However, we can turn T into a non-weakly compact operator by adding to the unit ball of X vectors \((f_n) \) for which \((Tf_n) \) is not weakly compact in c\textsubscript{0} and taking for the new unit ball in X the absolute convex solid hull of the old unit ball and the \(f_n \)'s, in order to get a normed lattice. The completion of the resulting space probably still contains \ell\textsubscript{1} complementably, but we can kill them by taking the p-convexification of the space for some 1 < p < \infty.

Letting X and T be defined as above we define \(f_n \) \in X by

\[(f_n)_{i, j} = \begin{cases} 1, & \text{if } i \leq n \leq j \\ 0, & \text{otherwise} \end{cases}. \]

Clearly

\[Tf_n = \sum_{i=1}^{n} e_i \]

where \((e_i)_{i=1}^{\omega} \) is the unit vector basis for c\textsubscript{0}.

Let \(X_0 \) be the dense sublattice of X consisting of those vectors \(a = (a_{i, j}) \) whose rows are eventually zero; i.e., for some \(n, a_{i, j} = 0 \) for all \(i \geq n \) and all \(j = 1, 2, \ldots, \omega \).
Let $\| \cdot \|_1$ be the greatest lattice norm on X_0 such that

$$\| f_n \|_1 \leq 1, \quad \| x \|_1 \leq \| x \|$$

for $n = 1, 2, \ldots$ and all $x \in X_0$. That is, $\| \cdot \|_1$ is the gauge of the closed absolutely convex solid hull of the unit ball of X_0 and the sequence (f_n). Thus $\| x \|_1 < 1$ if and only if there are $g \in X_0^+$ and eventually zero sequence s_1, s_2, \ldots in \mathbb{R}^+ so that

$$|x| \leq g + \sum_{i=1}^{\infty} s_i f_i \quad \text{and} \quad \| g \|_X + \sum_{i=1}^{\infty} s_i < 1.$$

Let $(X_1, \| \cdot \|_1)$ be the completion of $(X_0, \| \cdot \|_1)$ and for $1 < p < \infty$, let $(X_p, \| \cdot \|_p)$ be the completion of the p-convexification of $(X_0, \| \cdot \|_1)$; that is, for $x \in X_0$,

$$\| x \|_p = \left(\sum_{i=1}^{\infty} |x_i|^p \right)^{1/p}.$$

(See chapter 1.e in [3] for a discussion of p-convexity.)

We claim that $\| T \|_p = 1$ for every $1 \leq p < \infty$; i.e., T has norm one as an operator from $(X_0, \| \cdot \|_p)$ into c_0. This claim is a consequence of the observation that for each i and j, the coordinatewise evaluation functional on X_0 defined by $a \mapsto a_{i, j}$ has $\| \cdot \|_p$-norm one.

(For $p=1$ this is clear, because $|f_n| \leq 1$ for each n, the general case then follows from the definition of $\| \cdot \|_p$.)

Since X_0 is dense in X_p, T extends to a norm one operator, T_p, from X_p into c_0. Note also that T_p is a lattice homomorphism and for every choice of signs ε and $n = 1, 2, \ldots$, there is $g \in X_0$, $|g| \leq f_n$, so that $T_p g = \sum_{i=1}^{\infty} \varepsilon_i e_i$, which shows that T_p is a quotient map.

In the sequel, we shall say that a sequence $(x_n)_{n=1}^{\infty}$ in X_p is a special c_0-sequence if there exist $K < \infty$ and integers $i_1 < i_2 < \ldots$ such that for every $n = 1, 2, \ldots$,

$$x_n \geq 0, \quad \| x_n \|_p = 1$$

$$(x_n)_{i, j} = 0 \text{ if } i \neq j.$$
Note that if \(1 \leq i < \infty\) and \(x \in X_0\) with

\[x_{\ell,j} = 0 \text{ for } \ell \neq i,\]

then

\[\|x\|_X = \sup_j |x_{i,j}|\; ;\]

consequently,

\[\|x\|_p = \sup_j |x_{i,j}|\]

for \(p = 1\) and hence for all \(1 \leq p < \infty\). In particular, all the terms of a special \(c_0\)-sequence lie in \(X_0\).

We now show that \(X_1\) contains no special \(c_0\)-sequence.

If such a sequence \((x_n)_{n=1}^\infty\) exists in \(X_1\), pick for each \(n\) an index \(j_n < \omega\) so that

\[(x_n)_{i_n,j_n} \geq 1/2 \sup_j (x_n)_{i_n,j} = 1/2 \|x_n\|_1 = 1/2.\]

By passing to a subsequence, we may assume that \(i_{n+1} > j_n\) for each \(n\).

Given an integer \(N\), find \(g \in X_0^+\) and \((s_i)_{i=1}^\infty \subseteq \mathbb{R}^+\) so that

\[\sum_{n=1}^N x_n \leq g + \sum_{i=1}^\infty s_i f_i,\]

\[\|g\|_X + \sum_{i=1}^\infty s_i < \|\sum_{n=1}^N x_n\|_1 + 1.\]

Evaluating both sides of the first inequality at \((i_n,j_n)\), we get

\[1/2 \leq (g)_{i_n,j_n} + \sum_{i=i_n}^{j_n} s_i \text{ for } n = 1, 2, \ldots, N.\]

It follows that

\[N/2 \leq \sum_{n=1}^N (g)_{i_n,j_n} + \sum_{n=1}^N \sum_{i=i_n}^{j_n} s_i \leq \sum_{n=1}^N (g)_{i_n,j_n} + \sum_{n=1}^N \sum_{i=i_n}^{j_n} s_i.\]
XII.5

\[\|g\|_X + \sum_{i=1}^{\infty} s_i < \sum_{n=1}^{N} x_n \|_1 + 1 \]

which for large \(N \) contradicts the inequality

\[\| \sum_{n=1}^{N} x_n \|_1 < K. \]

To prove (i), suppose that \(T : X_p \to c_0 \) is an isomorphism on an infinite dimensional subspace \(E \) of \(X_p \) which we may assume is isomorphic to \(c_0 \). Let \((z_n)_{n=1}^{\infty} \) be a normalized basis for \(E \) which is \(K \)-equivalent to the unit vector basis of \(c_0 \); since \(X_0 \) is dense in \(X_p \), we can assume that each \(z_n \) lies in \(X_0 \).

Since

\[\| T z_n \| = \max_i |(z_n)_i, \omega | \text{ and } \lim_{n \to \infty} |(z_n)_i, \omega | = 0 \text{ for each } i \in \mathbb{N}, \]

we can find a sequence \(i_1 < i_2 < \ldots \) and \(\delta > 0 \) such that for all \(n \),

\[|(z_n)_{i_n}, \omega | > \delta. \]

Define the band projection \(P_n : X_p \to X_p \) by

\[(P_n x)_{i,j} = \begin{cases} x_{i,j}, & \text{if } i = n \\ 0, & \text{if } i \neq n. \end{cases} \]

By the diagonal principle (cf. p. 20 in [2]) it follows that the disjoint sequence \((P_n z_n)_{n=1}^{\infty} \) is \(K/\delta \)-equivalent to the unit vector basis of \(c_0 \). Consequently,

\[y_n = \| P_n z_n \|_p^{-1} | P_n z_n \| \]

is a special \(c_0 \)-sequence in \(X_p \) and hence the sequence \(x_n = y_n \) is a special \(c_0 \)-sequence in \(X_1 \), which is a contradiction.

To prove (ii), note that if \(E \) is a subspace of \(X_p \) isomor-
XII.6

phic to \(\ell_1 \), and if \(S X = \sum_{i=1}^{m} p_i X_i \) determines the natural Schauder decomposition of \(X \), then \(S_j \) cannot be an isomorphism for any \(m \) because \(S X \) is isomorphic to \(c_0 \). Thus there exists a normalized sequence \((x_n)_{n=1}^{\infty} \) in \(E \) which is equivalent to the unit vector basis for \(\ell_1 \) and a disjoint sequence in \(X_0 \) so that

\[
\lim_{n \to \infty} \|x_n - y_n\|_p = 0.
\]

It follows that the sublattice of \(X \) generated by \((y_n)_{n=1}^{\infty} \) is isomorphic to \(\ell_1 \), which is impossible for \(p > 1 \) because \(X_0 \) is \(p \)-convex.

\[\square\]

§ II. OPERATORS WHOSE ADJOINT ARE NOT WEAK*-SEQUENTIALLY COMPACT:

To study the extensions of theorem (B), we note first that if \(K \) is \(\sigma \)-Stomian, then \(C(K) \) is a Grothendieck space, that is, the weak-star sequential convergence in its dual coincide with the weak convergence. The problem then reduces to the study of the structure of operators whose adjoints are not weak-star sequentially compact and whose domain is a Banach lattice which contains no complemented copy of \(\ell_1 \). The first theorem reduces the problem to \(C(K) \)-spaces, where much is known.

Given any \(u \) in the positive cone \(L^+ \) of a Banach lattice \(L \), denote by \(L_u \) the (not necessarily closed) ideal generated by \(u \). The canonical injection from \(L_u \) into \(L \) is denoted by \(j_u \) or just \(j \) if there is no ambiguity. If we put the natural norm on \(L_u \), defined by

\[
\|x\|_u = \inf \{\lambda > 0 : |x| \leq \lambda u\}
\]

then \((L_u, \|\cdot\|_u) \) is an abstract M-space with unit \(u \) and hence is isometrically isomorphic to a \(C(K) \) space by Kakutani’s Theorem. The operator \(j_u : (L_u, \|\cdot\|_u) \rightarrow L \) obviously has norm \(\|u\| \).

Theorem 2: Let \(L \) be a Banach lattice which does not contain a copy of \(\ell_1 \) as a sublattice and let \(T \) be an operator from \(L \) into a Banach space \(X \) such that \(T^{\star*} \operatorname{Ball}(X^{\star}) \) is not weak* sequentially compact. Then there exists \(u \in L^+ \) so that \((Tj_u)^{\star*} \operatorname{Ball}(X^{\star}) \) is not weak* sequen-
To prove the theorem we will need a few lemmas. Given an infinite subset of \mathbb{N}, denote by $[M]$ the set of all infinite subsets of M. Given a Banach space L and a bounded sequence (f_n) in L^*, we define for $x \in L$ and $M \in [\mathbb{N}]$

$$\alpha_M(x) = \limsup_{m \in M} f_m(x) - \liminf_{m \in M} f_m(x).$$

Note that

$$\alpha_M(x) \leq 2 \sup_{m \in M} \|f_m\| \|x\|$$

and there exists $P \in [M]$ so that

$$\lim_{p \in P} f_p(x) = \frac{1}{2} \alpha_M(x).$$

Given $A \subseteq L$, define

$$\alpha_M(A) = \sup\{\alpha_M(x) : x \geq 0, \|x\| \leq 1, x \in A\}$$

and

$$\beta_M(A) = \inf\{\alpha_M(A) : P \in [M]\}.$$

Lemma (3): Let L be a Banach space and let (f_n) be a bounded sequence in L^*. If $A \subseteq \text{Ball}(L)$ and $M \in [\mathbb{N}]$, then either $\beta_M(A) > 0$ for some $P \in [M]$ or there exists $P \in [M]$ such that $(f_p)_{p \in P}$ converges pointwise on A.

Proof: If $\beta_M(A) = 0$ for all $P \in [M]$, we can recursively define infinite sets $M \supseteq P_1 \supseteq P_2 \supseteq \ldots$ so that $\alpha_{P_n}(A) < \frac{1}{n}$. If P is a diagonal sequence with respect to the P_n's, then $\alpha_P(A) = 0$; i.e., $(f_p)_{p \in P}$ converges on A.

From lemma (3) it follows that if L is a Banach lattice and $(f_n) \subseteq \text{Ball}(L^*)$ has no weak* convergent subsequence, then we may assume, by passing to a subsequence of (f_n) that $\beta_M(L^*) > 0$.

To prove Theorem 2, we fix a sequence $(f_n) \subseteq T^* \text{Ball}(X^*)$ with $\sup_{n} \|f_n\| < 1$ so that $\beta_M(L^*) > 0$. We assume that $\beta_M(L_X) = 0$ for
all \(x \in L^+ \) and \(M \in [\mathbb{N}] \) since this is the case if \((j)f(x)_{m} \in M\) has a subsequence which converges weak* in \(L_x^*\). The conclusion that this set-up implies that \(L\) must contain a disjoint positive sequence equivalent to the unit vector basis of \(\ell_1\) is an immediate consequence of the next two lemmas. Lemma (4), produces an "almost disjoint" sequence in \(\text{Ball}(L^+)\) which, by Lemma (5), has a subsequence which is a small perturbation of a disjoint \(\ell_1\) sequence.

\textbf{Lemma (4)}: Suppose that \(L\) is a Banach lattice, \((f_n) \subseteq \text{Ball}(L^*)\), \(\alpha_n(L^*) > \delta > 0\), \(\beta_{M}(L_x) = 0\) for all \(M \in [\mathbb{N}]\) and \(x \in L^+\), and \(\varepsilon_n \rightarrow 0\). Then there exists \(f \in \text{weak}^*\) closure \((f_n)\) and \((y_n) \subseteq \text{Ball}(L^+)\) so that for each \(n = 1, 2, \ldots\),

(i) \[\left\| \left(\sum_{i=1}^{n-1} y_i \right) \wedge y_n \right\| < \varepsilon_n\]
(ii) \[|f(y_n)| \geq \delta/2\]

\textbf{Proof}: By induction we construct a sequence \((y_n) \subseteq \text{Ball}(L^+)\) and \((M_n) \subseteq [\mathbb{N}]\) to satisfy for each \(n = 1, 2, \ldots\) condition (i) and

(iii) \[M_{n+1} = M_n\]
(iv) \[|f_m(y_n)| > \delta/2\] for all \(m \in M_n\).

Having done this, we simply let \(f\) be any element of \(\text{Ball}(L^*)\) which is a weak* cluster point of \((f_k)_{k \in M_n}\) for each \(n = 1, 2, \ldots\).

Choosing \(y_1 \in \text{Ball}(L^+\) so that \(\alpha_{M}(y_1) > \delta\), we have that

\[\lim \sup_{m \in M} |f_m(y_1)| > \delta/2\]

so that we can choose \(M_1 \in [\mathbb{N}]\) to satisfy (iv) for \(n = 1\).

Having defined \((M_n)_{n=1}^{N}\) and \((y_n)_{n=1}^{N}\) to satisfy (i), (iii), and (iv) for \(n \leq N\), we pick \(M \in [M_N]\) so that

\[\alpha_{M}([0, \Sigma_{i=1}^{N} y_i]) = 0\]

and choose \(z \in \text{Ball}(L^+)\) so that \(\alpha_{M}(z) > \delta\). Define
Since
\[y_{N+1} = z - z \wedge \left(\varepsilon_{N+1}^{-1} \sum_{i=1}^{N} y_i \right). \]

Thus we can choose \(I \) so that for all \(m \in \mathbb{M}_{N+1} \),
\[\alpha_{M}(y_{N+1}) = \alpha_{M}(z) > \delta. \]

Thus we can choose \(M_{N+1} \in [M] \) so that for all \(m \in M_{N+1} \),
\[|f_m(y_{N+1})| > \delta/2. \]

To check (i), just note that if \(z, x \in L^+ \) and \(\lambda \in \mathbb{R}^+ \), then
\[(z - z \wedge \lambda x) \wedge x = (z - \lambda x)^+ \wedge x \leq \lambda^{-1} z. \]

Lemma (5): Suppose that \(L \) is a Banach lattice, \(f \in \text{Ball}(L^*) \),
\((y_n) \subseteq \text{Ball}(L^+) \), and \(0 < \delta < \delta + \varepsilon \). Suppose that for each \(n = 1, 2, \ldots \),
\[|f(y_n)| \geq \delta + \varepsilon \] and \[\lim_{n \to \infty} \|\sum_{i=1}^{n} y_i \wedge y_k\| = 0. \] Then there is a subsequence \((y_{n(i)}) \) of \((y_n) \) and a disjoint sequence \((x_i) \) in \(L^+ \) with \(x_i \leq y_{n(i)} \) so that for each \(i = 1, 2, \ldots \),
\[\|y_{n(i)} - x_i\| < 4^{-i+1} \varepsilon. \]

Consequently, \(|f(x_i)| > \delta \) for each \(i = 1, 2, \ldots \), and hence \((x_i) \) is
\(1/5 \)-equivalent to the unit vector basis for \(l_1^* \) and \(\{x_i\} \) is \(1/5 \)-complemented in \(L \).

Proof: Assume, by passing to a subsequence of \((y_n) \), that for \(n = 1, 2, \ldots \),
\[\|y_{n+1} \wedge \sum_{i=1}^{n} y_i\| < 4^{-n} \varepsilon. \]

We define by recursion a double sequence \((y_{n,k})_{n=1}^{\infty} \subseteq \text{Ball}(L^+) \) to satisfy
\((y_{n,k})_{n=1}^{k} \) is disjoint for \(k = 1, 2, \ldots \)
\[y_{n,k+1} \leq y_{n,k} \leq y_n \] for \(1 \leq n \leq k \).
(d) \[\| y_n - y_n, n \| < 4^{-n} \varepsilon \text{ for } n = 1, 2, \ldots \]

(e) \[\| y_{n, k} - y_{n, k+1} \| < 4^{-k} \varepsilon \text{ for } 1 \leq n \leq k. \]

Once this is done, we can in view of (e) set

\[x_n = \lim_{k \to \infty} y_{n, k} ; \]

from (b) and (c) we have that \((x_n)_{n=1}^{\infty}\) is disjoint and \(0 \leq x_n \leq y_n\) for each \(n = 1, 2, \ldots\). From (d) and (e) we infer that

\[\| y_n - x_n \| < 4^{-n+1} \varepsilon. \]

We turn now to the construction of the \(y_{n, k}\)'s. Set \(y_1, 1 = y_1\).

Suppose that \((y_{n, k})_{n=1}^{N} k=n\) has been defined. Let

\[y_{N+1, N+1} = y_{N+1} - \sum_{k=1}^{N} y_{N, k} \]

and, for \(1 \leq n \leq N + 1\), set

\[y_{n, N+1} = y_{n, N} - y_{n, N} \wedge y_{N+1} \cdot \]

We leave the verification of (b) - (e) to the reader. \(\square\)

By applying Theorem (2) we obtain the following two corollaries of Theorem (2).

Corollary (6): Let \(L\) be a \(\sigma\)-complete Banach lattice which does not contain a copy of \(\ell_1\) as a sublattice. If \(T\) is an operator from \(X\) into some Banach space \(Y\) and \(T^* \text{Ball}(Y^*)\) is not weak\(^*\) sequentially compact, then \(T\) preserves a copy of \(\ell_\infty\).

Proof: By Theorem (2) there is \(u \in L^+\) so that \((T_j u)^* \text{Ball}(Y^*)\) is not weak\(^*\) sequentially compact and hence not weakly compact. When \(L_u\) is represented as \(C(K)\) space, \(K\) is \(\sigma\)-Stonian because \(L\) is \(\sigma\)-complete. Therefore, by Theorem (B) \(T^* u\), hence also \(T\), preserves a copy of \(\ell_\infty\). \(\square\)

Corollary (7): If \(L\) is a \(\sigma\)-complete Grothendieck Banach lattice, then every non-weakly compact operator from \(L\) into any Banach space preserves a copy of \(\ell_\infty\).
Proof: A Grothendieck space cannot contain ℓ_1 (or any other non-reflexive separable space) as a complemented subspace, and non-weakly compact operators from a Grothendieck space have adjoints which are not weak* sequentially compact, and hence Corollary (6) can be applied to any non-weakly compact operator from a σ-complete Grothendieck Banach lattice.

Problem: It is still unknown whether every non-weakly compact operator from a Grothendieck space into any Banach space preserves a copy of ℓ_∞.

References:

