Compact Subgroups of $GL_n(\mathbb{C})$.

JEAN FRESNEL (*) - MARIUS VAN DER PUT (**)

1. Introduction.

Let $G \subset GL_n(\mathbb{C})$ be a compact subgroup. Using the Haar measure on G one obtains a positive definite Hermitian form on \mathbb{C}^n which is invariant under G. In other words, G is conjugated, with respect to $GL_n(\mathbb{C})$, to a subgroup of the standard unitary group $U_n(\mathbb{C})$. In particular, every $g \in G$ is semisimple and all its eigenvalues have absolute value 1.

The inverse problem was posed by K. Millet and I. Kaplansky (see [Ba]):

Suppose that the subgroup $G \subset GL_n(\mathbb{C})$ has the property that every $g \in G$ is semisimple and all its eigenvalues have absolute value 1. Is G conjugated to a subgroup of $U_n(\mathbb{C})$?

For $n = 1, 2$ the answer is positive. A counterexample for $n \geq 3$ is given in ([Ba], Counterexample 1.10, p. 19). However, using the techniques of Burnside, it is shown in ([Ba], Corollary 1.8, p. 18), that G is isomorphic to a subgroup of $U_n(\mathbb{C})$. The aim of this paper is to present a proof of the following positive result.

Theorem 1.1. Suppose that the subgroup $G \subset GL_n(\mathbb{C})$ satisfies:

(i) Every element of G is semisimple and all its eigenvalues have absolute value 1.

(ii) G is closed with respect to the ordinary topology of $GL_n(\mathbb{C})$.

Then G is conjugated in $GL_n(\mathbb{C})$ to a subgroup of $U_n(\mathbb{C})$ and therefore compact.

The theorem has an almost immediate consequence.

(*) Indirizzo dell’A.: Laboratoire de Théorie des nombres et Algorithmique arithmétique, Université Bordeaux I, 351 cours de la Libération, 33405 Talence, France. E-mail: fresnel@math.u-bordeaux1.fr

(**) Indirizzo dell’A.: Department of Mathematics, University of Groningen, P.O.Box 800, 9700 AV Groningen, The Netherlands. E-mail: mvdput@math.rug.nl
COROLLARY 1.2. Let E be an n-dimensional affine euclidean space and G a closed subgroup of the group of all isometries of E. Suppose that each element of G has a fixed point. Then the group G is compact and has a fixed point.

PROOF. The action of $g \in G$ on \mathbb{R}^n is given by $X \in \mathbb{R}^n \mapsto gX = UX + A$ with $U \in O_n(\mathbb{R})$, $A \in \mathbb{R}^n$. One associates to $g \in G$ the matrix $M(g) = \begin{pmatrix} U & A \\ 0 & 1 \end{pmatrix} \in \text{GL}_{n+1}(\mathbb{R})$. All eigenvalues of $M(g)$ have absolute value 1. Since U is semisimple, $M(g)$ is semisimple if and only if there exists a vector $X \in \mathbb{R}^n$ such that $M(g) \begin{pmatrix} X \\ 1 \end{pmatrix} = \begin{pmatrix} X \\ 1 \end{pmatrix}$. This property of X is equivalent to X is a fixed point for g. It follows that $M(g)$ is semisimple if and only if g has a fixed point. The theorem implies that $\{M(g) | g \in G\}$ is compact. Then G is compact and has a fixed point. \hfill \qed

2. A result on real Lie algebras.

PROPOSITION 2.1. V is a complex vector space of dimension $n \geq 1$. Let \mathfrak{g} be a real Lie subalgebra of $\text{End}_\mathbb{C}(V)$ satisfying:

(a) $i \cdot 1_V \not\subset \mathfrak{g}$

(b) If $V = V_1 \oplus V_2$ with V_1, V_2 complex vector spaces invariant under \mathfrak{g}, then $V_1 = 0$ or $V_2 = 0$.

(c) Every element of \mathfrak{g} is semisimple and all its eigenvalues are in $i \cdot \mathbb{R}$.

Then the following holds:

(1) \mathfrak{g} is a real semisimple Lie algebra, $\mathfrak{g} := \mathbb{C} \otimes \mathbb{R} \mathfrak{g}$ is a complex semisimple Lie algebra and the canonical map $\mathfrak{g} \rightarrow \text{End}_\mathbb{C}(V)$ is injective.

(2) Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. Then $\tilde{\mathfrak{g}} := \mathbb{C} \otimes \mathfrak{h}$ is a Cartan subalgebra for the complex Lie algebra of \mathfrak{g}. Let R be the set of roots for the pair $(\mathfrak{g}, \mathfrak{h})$. Then

(2a) $a(h) \in i \cdot \mathbb{R}$ for every $h \in \mathfrak{h}$ and $a \in R$,

(2b) for every $a \in R$, the real Lie subalgebra of \mathfrak{g}, generated by $\mathfrak{g} \cap (\mathfrak{g}_a \oplus \mathfrak{g}_{-a})$ is isomorphic to \mathfrak{sl}_2.

(3) There exists a positive definite Hermitian form F such that for all $x, y \in V$ and $g \in \mathfrak{g}$ one has $F(gx, y) + F(x, gy) = 0$.

Proof. (1). Suppose that \mathfrak{g} is not semisimple. Then \mathfrak{g} has a non zero solvable ideal. Let $\alpha \neq 0$ be a minimal solvable ideal, then $[\alpha, \alpha] = 0$. Since the elements of α are semisimple and commute there is a decomposition $V := \mathbb{C}^n = V_1 \oplus \cdots \oplus V_r$ and there are distinct \mathbb{R}-linear maps $\lambda_j : \alpha \to \mathbb{i} \cdot \mathbb{R}$ such that the action of α on V is given by

$$a \left(\sum_{j=1}^r v_j \right) = \sum \lambda_j(a)v_j$$

for $a \in \alpha$ and $v_j \in V_j$ for all j.

Choose an element $a \in \alpha$ such that, say, $\lambda_1(a) = \mathbb{i}$ and the $\lambda_j(a)$ are distinct. For $g \in \mathfrak{g}$ one writes $b := [g, a] = ga - ag \in \alpha$. Consider for a given $u \in V_j$ the expression $g(u) = \sum v_k$ with all $v_k \in V_k$. Now $\lambda_j(b)u = b(u) = (ga - ag)(u) = \lambda_j(a)\sum v_k - \sum \lambda_k(a)v_k$. This implies $v_k = 0$ for $k \neq j$ and $\lambda_j(b)u = 0$. Thus the spaces V_j are invariant under \mathfrak{g}. Condition (b) implies $r = 1$. Then $a = \mathbb{i} \cdot 1_V$, which contradicts condition (a). One concludes that \mathfrak{g} is semisimple.

According to [F-H], $\mathfrak{g} := \mathbb{C} \otimes_{\mathbb{R}} \mathfrak{g}$ is semisimple, too. An element of \mathfrak{g} can uniquely be written as $1 \otimes a + \mathbb{i} \otimes b$ with $a, b \in \mathfrak{g}$. If the image of this element is 0 in End$_{\mathbb{C}}(V)$, then $a = -ib$. This implies $a = b = 0$ since a and b have their eigenvalues in $\mathbb{i} \cdot \mathbb{R}$ and are semisimple.

(2). The first statement of (2) is immediate. We recall (see [F-H]) that the Cartan decomposition (or root decomposition) $\mathfrak{g} = \mathfrak{h} \oplus (\oplus_{\alpha} \mathfrak{g}_\alpha)$ has the following properties: For any non zero linear map $a : \mathfrak{h} \to \mathbb{C}$ one has

$$\mathfrak{g}_\alpha := \{ g \in \mathfrak{g} \mid [h, g] = a(h)g \text{ for all } h \in \mathfrak{h} \}.$$

If $\mathfrak{g}_\alpha \neq 0$ then a is called a root and in that case dim$_{\mathbb{C}} \mathfrak{g}_\alpha = 1$. If a is a root, then ca with $c \in \mathbb{C}^*$ is a root if and only if $c = \pm 1$.

Fix an element $h \in \text{End}(V)$. The eigenvalues of the linear map $\text{End}(V) \to \text{End}(V)$, defined by $g \mapsto \text{ad}(h)(g) := [h, g]$, are the differences of the eigenvalues of h. In particular for $h \in \mathfrak{h}$ and $a \in \mathbb{R}$ one has $a(h) \in \mathbb{i} \cdot \mathbb{R}$. This proves (2a).

One writes $a_1, -a_1, \ldots, a_r, -a_r$ for the roots. Any $g \in \mathfrak{g}$ has a unique decomposition $g = g_0 + \sum_{j=1}^r (g_{a_j} + g_{-a_j})$ with $g_0 \in \mathfrak{h}$, $g_{\pm a_j} \in \mathfrak{g}_{\pm a_j}$.

Choose a generic element $h_0 \in \mathfrak{h}$, i.e., the $2r$ elements $\pm a_j(h_0) \in \mathbb{i} \cdot \mathbb{R}$ are distinct. For $m \geq 1$ one has

$$\text{ad}(h_0)^m(g) = \sum_j a_j(h_0)^mg_{a_j} + (-a_j(h_0))^mg_{-a_j} \in \mathfrak{g}.$$
Using this relation for \(m = 2n, \ n = 1, \ldots, r \) and observing that the
\(a_j(h_0)^2 \in \mathbb{R}^*, \ j = 1, \ldots, r \) are distinct, one finds that all \(g_{a_j} + g_{-a_j} \) are in \(\mathfrak{g} \). Then also \(g_0 \in \mathfrak{g} \). Similarly, one finds that each \(ig_{a_j} - ig_{-a_j} \in \mathfrak{g} \).

Now we study the real vector space \(T_j := \mathfrak{g} \cap (\mathfrak{g}_{a_j} + \mathfrak{g}_{-a_j}) \). As shown above, any element of \(\mathfrak{g}_{\pm a_j} \) is nilpotent. Since the elements of \(\mathfrak{g} \) are semisimple one has \(\mathfrak{g} \cap (\mathfrak{g}_{\pm a_j} = 0 \). In particular the two projections \(T_j \rightarrow \mathfrak{g}_{\pm a_j} \) are injective. We conclude from this that \(T_j \) has a real basis of the form \(X_{a_j} + X_{-a_j}, iX_{a_j} - iX_{-a_j} \), where \(X_{\pm a_j} \) are non zero elements of \(\mathfrak{g}_{\pm a_j} \).

The complex Lie algebra generated by \(X_{\pm a_j} \) is easily seen to be the complex Lie algebra \(\mathfrak{sl}_2(\mathbb{C}) \). One easily verifies that the real Lie algebra generated by \(X_{a_j} + X_{-a_j}, iX_{a_j} - iX_{-a_j} \) is isomorphic to \(\mathfrak{sl}_2 \). This proves (2b).

(3). One applies [F-H], Proposition 26.4. The condition (i) of that proposition is (2a) and (2b). The equivalent condition (iii) states that the real Lie algebra associated to \(\mathfrak{g} \) is compact. This implies the existence of a positive definite Hermitian form \(F \) on \(V \) such that \(F(gx, y) + F(x, gy) = 0 \) holds for all \(x, y \in V \) and \(g \in \mathfrak{g} \).

3. Proof of the theorem.

The case \(G \) connected.

Put \(\mathfrak{g} := \{ A \in \text{Mat}_n(\mathbb{C}) | \exp(tA) \in G \text{ for all } t \in \mathbb{R} \} \). According to ([M-T], Proposition 3.4.2 and 3.4.2.1.), \(\mathfrak{g} \) is a real Lie subalgebra of \(\text{Mat}_n(\mathbb{C}) \) and moreover \(G \) is generated by \(\{ \exp(g) | g \in \mathfrak{g} \} \). The elements \(g \in \mathfrak{g} \) are clearly semisimple and all their eigenvalues are in \(\mathfrak{i} \cdot \mathbb{R} \).

Let \(V := \mathbb{C}^n = V_1 \oplus \cdots \oplus V_r \) denote a maximal decomposition into (non trivial) complex subspaces invariant under \(\mathfrak{g} \). This decomposition is also invariant under the action of \(G \). It suffices to prove the theorem for the restriction of \(G \) to each \(V_j \). In other words we may suppose that \(r = 1 \). Thus \(\mathfrak{g} \) satisfies the conditions (b) and (c) of Proposition 2.1.

If \(\mathfrak{i} \cdot 1_V \in \mathfrak{g} \), then one replaces \(\mathfrak{g} \) by \(\mathfrak{g}^* := \{ g \in \mathfrak{g} | Tr(g) = 0 \} \). The latter is again a real Lie algebra, satisfies (a)\textendash)(c) and moreover \(\mathfrak{g} = \mathfrak{g}^* \oplus \mathfrak{R} \cdot 1 \).

The positive definite Hermitian form of part (3) of Proposition 2.1 has clearly the property \(F(gx, gy) = F(x, y) \) for all \(g \in G \) and \(x, y \in V \).

The general case.

Now \(G \) is a closed subgroup of \(\text{GL}_n(\mathbb{C}) \) (for the ordinary topology) such that every element of \(G \) is semisimple and such that all its eigenvalues have
absolute value 1. Let G^o denote the component of the identity of G. According to the previous case, the group G^o is compact.

Lemma 3.1. G/G^o is a torsion group, i.e., all its elements have finite order.

Proof. Let g be an element of G. Choose a basis e_1, \ldots, e_n of eigenvectors of g. The group T, consisting of all elements $t \in \text{GL}_n(\mathbb{C})$ such that $te_j = c_j e_j$, $|c_j| = 1$ for all j, is compact. The topological closure $H \subset \text{GL}_n(\mathbb{C})$ of the group generated by g is a closed subgroup of T and therefore compact. The component of the identity H^o of H has finite index in H, since H is compact. Moreover, $H^o \subset G^o$. It follows that the image of g in G/G^o has finite order. \qed

The group G^o is conjugated to a subgroup of $U_n(\mathbb{C})$ and hence compact. One considers the real vector space Herm consisting of the Hermitian forms F on V. The group G acts linearly on Herm by $(gF)(x,y) := F(gx, gy)$. The real linear subspace Herm_{G^o} consisting of the G^o-invariant Hermitian forms is not 0 and contains in fact a positive definite Hermitian form. The space Herm_{G^o} is invariant under G, since G^o is a normal subgroup of G. The action of G on Herm_{G^o} induces a homomorphism $G \rightarrow \text{GL}(\text{Herm}_{G^o})$ with kernel G^+ and image I. Since $G^+ \supset G^o$ the group I is a torsion group. G^+ leaves a positive definite Hermitian form invariant and is closed. Therefore G^+ is compact.

We will need the following classical result and refer to ([Fr], p. 209, or [C-R] p. 252, or [S]) for a proof.

Lemma 3.2 (Schur’s theorem). Let H be a torsion subgroup of $\text{GL}_n(F)$, for some field F. Then:

Any finitely generated subgroup J of H is finite. As a consequence, H is the filtered union of its finite subgroups.

We apply the lemma to I. Let $J \subset I$ be a finite subgroup. Its preimage $J^* \subset G$ is compact and the subspace Herm_{J^*} of the J^*-invariant elements of Herm is not 0 and contains a positive definite Hermitian form. For finite subgroups $J_1 \subset J_2$ of I one has $\text{Herm}_{J_1} \supset \text{Herm}_{J_2}$. Since the spaces Herm_{J^*} have finite dimension and I is the filtered union of its finite subgroups, there exists a finite subgroup J_0 of I such that $\text{Herm}_{J_0} = \text{Herm}_K$, for every finite subgroup $K \subset I$, containing J_0. This implies the existence of a positive definite Hermitian form invariant under G.
REFERENCES

Manoscritto pervenuto in redazione il 4 luglio 2005.